A sensing array based on aggregation-induced emission micelles was proposed for efficient discrimination of three typical long-chain fatty acids (lauric, palmitic, and stearic acids) and their mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc01801jDOI Listing

Publication Analysis

Top Keywords

aggregation-induced emission
8
sensing array
8
long-chain fatty
8
fatty acids
8
emission micelle-based
4
micelle-based sensing
4
array discrimination
4
discrimination long-chain
4
acids sensing
4
array based
4

Similar Publications

Mechanofluorochromic (MFC) materials are emerging as a versatile candidate for optoelectronic and biomedical applications. In the present work, we designed and synthesized four MFC materials, namely BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2, using Suzuki cross-coupling reaction. These materials possess benzothiazole (BT) as an acceptor moiety and different donors, including phenothiazine (PTZ) and triphenylamine (TPA), with variations in their spacer units.

View Article and Find Full Text PDF

Background: Multifunctional fluorescent probes have attracted much attention due to their wide range of applications and high utilization. In this study, a multifunctional fluorescent probe (E)-3-(4-(7-(4-(diphenylamino)phenyl)benzo[c] [1,2,5]thiadiazol-4-yl)phenyl)acrylic acid (TBAC) based on triphenylamine was designed and synthesized.

Results: The TBAC probe provided excellent aggregation-induced emission (AIE) performance and could be used as a fluorescent ink for printing.

View Article and Find Full Text PDF

Rational design of AIEgens through π-bridge engineering for dual-modal photodynamic and photothermal therapy.

Bioorg Med Chem

January 2025

School of Pharmacy, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Guizhou International Science & Technology Cooperation Base of Medical Optical Theranostics Research, Zunyi Medical University, Zunyi, Guizhou 563003, PR China. Electronic address:

A series of aggregation-induced emission luminogens (AIEgens) with donor-π-acceptor (D-π-A) architecture were rationally designed and synthesized through π-bridge engineering for dual-modal photodynamic and photothermal therapy. The AIEgens (TPT, TFT, and TTT) were constructed using methoxy-substituted tetraphenylene as the electron donor and tricyanofuran as the electron acceptor, connected via different π-bridges (phenyl, furan, or thiophene). These compounds exhibited red-shifted absorption (460-545 nm) and emission (712-720 nm) with remarkable aggregation-induced emission characteristics.

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!