Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs), abbreviated as P-QLEDs have been regarded as significantly crucial emitters for lighting and displays. Efficient and stable P-QLEDs still lack ideal electron transport materials (ETM), which could efficiently block hole, transport electron, reduce interface non-radiative recombination and possess high thermal stability. Here, we report 2,4,6-Tris(3'-(pyridine-3-yl) biphenyl-3-yl)-1,3,5-triazine (TmPPPyTz, 3P) with strong electron-withdrawing moieties of pyridine and triazine to modulate the performance of P-QLEDs. Compared with commonly used 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), the pyridine in 3P have a strong interaction with perovskites, which can effectively suppress the interface non-radiative recombination caused by the Pb defects on the surface of QDs. In addition, 3P have deep highest occupied molecular orbital (HOMO) (enhancing hole-blocking properties), matched lowest unoccupied molecular orbital (LUMO) and excellent electron mobility (enhancing electron transport properties), realizing the carrier balance and maximizing the exciton recombination. Furthermore, high thermal resistance of 3P obviously improves the stability of QDs under variable temperature, continuous UV illumination, and electric field excitation. Resultantly, the P-QLEDs using the 3P as ETM achieved an outstanding performance with a champion EQE of 30.2 % and an operational lifetime T of 3220 hours at an initial luminance of 100 cd m, which is 151 % and about 11-fold improvement compared to control devices (EQE=20 %, T=297 hours), respectively. These results provide a new concept for constructing the efficient and stable P-QLEDs from the perspective of selective ETM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202410689 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
CO mineralization, a process where CO reacts with minerals to form stable carbonates, presents a sustainable approach for CO sequestration and mitigation of global warming. While the crucial role of water in regulating CO mineralization efficiency is widely acknowledged, a comprehensive understanding of the underlying mechanisms remains elusive. This study employs a combined experimental and atomistic simulation approach to elucidate the intricate mechanisms governing moisture-driven carbonation kinetics of calcium-bearing minerals.
View Article and Find Full Text PDFPlant Cell
January 2025
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China.
The reddish apocarotenoid β-citraurin, produced by CAROTENOID CLEAVAGE DIOXYGENASE 4b (CsCCD4b), is responsible for peel reddening in citrus (Citrus spp.). Ethylene induces the characteristic red color of citrus peel, but the underlying molecular mechanism remains largely unclear.
View Article and Find Full Text PDFIndividual choices shape life course trajectories of brain structure and function beyond genes and environment. We hypothesized that individual task engagement in response to a learning program results in individualized learning biographies and connectomics. Genetically identical female mice living in one large shared enclosure freely engaged in self-paced, automatically administered and monitored learning tasks.
View Article and Find Full Text PDFNanomicro Lett
January 2025
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.
Organic additives with multiple functional groups have shown great promise in improving the performance and stability of perovskite solar cells. The functional groups can passivate undercoordinated ions to reduce nonradiative recombination losses. However, how these groups synergistically affect the enhancement beyond passivation is still unclear.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
School of Integrated Circuits, Tsinghua University, Beijing 100084, China.
In shallow water, reverberation complicates the detection of low-intensity, variable-echo moving targets, such as divers. Traditional methods often fail to distinguish these targets from reverberation, and data-driven methods are constrained by the limited data on intruding targets. This paper introduces the online robust principal component analysis and multimodal anomaly detection (ORMAD) method to address these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!