Dehydrogenative [4 + 2] Annulation of 1-Indanones with Alkynes Enabled by In-Situ-Generated Nickel Hydride.

Org Lett

Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.

Published: August 2024

A practical and effective nickel-catalyzed dehydrogenative [4 + 2] annulation of 1-indanones with alkynes was reported. In this protocol, nickel-catalyzed desaturation of 1-indanones and nickel hydride catalyzed coupling with alkynes were first incorporated. A cyclopentadiene-type nickel hydride species was generated in situ via β-H elimination, and they subsequently reacted with a wide variety of alkynes to afford various benzo[a]fluorenone derivatives in good yields and regioselectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c02272DOI Listing

Publication Analysis

Top Keywords

nickel hydride
12
dehydrogenative annulation
8
annulation 1-indanones
8
1-indanones alkynes
8
alkynes
4
alkynes enabled
4
enabled in-situ-generated
4
in-situ-generated nickel
4
hydride practical
4
practical effective
4

Similar Publications

Unraveling the electronic structure of metal complexes can bring various catalytic possibilities for hydrogen evolution reaction (HER). However, the electronic effect of metal and ligands modulating and switching the reaction center for HER has yet to be comprehensively analyzed. Herein, we report nickel selenoether electrocatalysts which show tunable reaction centers (nickel or ligand) for HER using mild weak acetic acid in less deprotonating DMF solvent.

View Article and Find Full Text PDF

There is still much to be learned about the properties of siderophores and their applications. This study was designed to characterize and optimize the production of the siderophore produced by a marine bacterium Pseudomonas sp. strain ASA235 and then evaluate their use in bioleaching of rare earth elements (REEs) from spent Nickel-metal hydride (NiMH) batteries.

View Article and Find Full Text PDF

The second 3d-transition metal incorporation in Ni-(oxy)hydroxide has a drastic effect on alkaline OER and alcohol dehydrogenation reactivity. While Mn incorporation suppresses the alkaline OER, it greatly improves the alcohol dehydrogenation reactivity. A complete reversal of reactivity is obtained when Fe is incorporated, which shows better performance for alkaline OER with poor alcohol dehydrogenation reactivity.

View Article and Find Full Text PDF

Using amines in catalytic transfer hydrogenation (TH) is challenging, despite their potential availability as a hydrogen source. Here, we describe a photoredox/nickel-catalyzed TH of alkyne through an intermediary aminoalkyl Ni species. This reaction successfully provided functionalized ()-alkenes, such as (homo)allyl ethers, alcohols, and amides (/ = up to >99:1), and the reaction thus bypasses a limitation of substrate scope in TH using amine and a Lindlar catalyst.

View Article and Find Full Text PDF

Polarity-Reversed Functionalization of Aliphatic Aldehydes via Divergent Nickel Hydride Catalysis.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China.

Divergent catalysis represents an exciting frontier for unlocking molecular structural diversity and exploring new activation modes. Here, we report the unexpected discovery of polarity-reversed divergent activation and functionalization of aliphatic aldehydes, where enolizable aliphatic aldehydes are selectively activated by nickel hydride to form two distinct alkylnickel intermediates divergently. This mild and operationally simple process enables the transformation of a wide variety of readily available aliphatic aldehydes, along with alkyl or aryl electrophiles, into the corresponding secondary alcohols or more challenging deoxygenated alkanes with excellent chemoselectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!