Enzymatically Mediated In Situ Generation of Z-Scheme BiS/BiMoO Heterojunction-Based Organic Photoelectrochemical Transistor for METTL3/METTL14 Detection.

Anal Chem

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, PR China.

Published: August 2024

The OPECT biosensing platform, which connects optoelectronics and biological systems, offers significant amplification and more possibilities for research in biological applications. In this work, a homogeneous organic photoelectrochemical transistor (OPECT) biosensor based on a BiS/BiMoO heterojunction was constructed to detect METTL3/METTL14 protein activity. The METTL3/METTL14 complex enzyme was used to catalyze adenine (A) on an RNA strand to mA, protecting mA-RNA from being cleaved by an toxin (MazF). Alkaline phosphatase (ALP) catalyzed the conversion of NaSPO to HS through an enzymatic reaction. Due to the adoption of the strategy of no fixation on the electrode, the generated HS was easy to diffuse to the surface of the ITO electrode. The BiS/BiMoO heterojunction was formed in situ through a chemical replacement reaction with BiMoO, improving photoelectric conversion efficiency and realizing signal amplification. Based on this "signal on" mode, METTL3/METTL14 exhibited a wide linear range (0.00001-25 ng/μL) between protein concentration and photocurrent intensity with a limit of detection (LOD) of 7.8 fg/μL under optimal experimental conditions. The applicability of the developed method was evaluated by investigating the effect of four plasticizers on the activity of the METTL3/METTL14 protein, and the molecular modeling technique was employed to investigate the interaction between plasticizers and the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c01610DOI Listing

Publication Analysis

Top Keywords

organic photoelectrochemical
8
photoelectrochemical transistor
8
bis/bimoo heterojunction
8
mettl3/mettl14 protein
8
activity mettl3/mettl14
8
mettl3/mettl14
5
enzymatically mediated
4
mediated situ
4
situ generation
4
generation z-scheme
4

Similar Publications

Herein, we discuss the idea that fluorescent materials/molecules should logically show potential photoelectrochemistry (PEC) activity, and, in particular, the PEC of fluorescent small molecules (previously usually acting only as dye sensitizers for conventional semiconductors) is explored. After examining the PEC activities of some typical inorganic or organic fluorescent materials/molecules and by adopting methyl violet (MV) with the highest PEC activity among the examined fluorescent small molecules, a new and efficient (MV/Au nanoparticles (AuNPs))/fluorine-doped tin oxide (FTO) photoanode without conventional semiconductor(s) is prepared by layer-by-layer alternating the electrodeposition of AuNPs and the adsorption of MV. A bilirubin oxidase (BOD)/CuCoO/FTO bio-photocathode is prepared by electrodeposition, calcination and cast-coating.

View Article and Find Full Text PDF

Photo-driven Ammonia Synthesis via a Proton-mediated Photoelectrochemical Device.

Angew Chem Int Ed Engl

January 2025

Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Design and Assembly of Functiaonal Nanostructures, YangQiao West Road 155#, 350002, Fuzhou, CHINA.

N2 reduction reaction (NRR) by light is an energy-saving and sustainable ammonia (NH3) synthesis technology. However, it faces significant challenges, including high energy barriers of N2 activation and unclear catalytic active sites. Herein, we propose a strategy of photo-driven ammonia synthesis via a proton-mediated photoelectrochemical device.

View Article and Find Full Text PDF

Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode.

ACS Sens

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay.

View Article and Find Full Text PDF

Sensitive and accurate determination of acetamiprid is highly desirable for guaranteeing food safety. In this Letter, an energy-transfer-based dual-mode biosensor was developed using zinc-based metal-organic frameworks (Zn-MOFs) acting as both photoelectrochemical (PEC) and electrochemiluminescent (ECL) donors and Pt@CuO cubic nanocrystals (CNs) as the energy acceptor for detecting acetamiprid. By integration of aptamer recognition with two-step DNA circuit amplification (entropy-driven DNA cycle and DNA walker), the detection of acetamiprid was converted into the assay of abundant intermediate DNA strands.

View Article and Find Full Text PDF
Article Synopsis
  • This study highlights the critical role of light in facilitating exciton formation and separation in photocathodes, essential for charging lithium-ion batteries.
  • Light induces oxidation changes in titanium-based cathodes, while heat fails to produce similar effects.
  • The research suggests that effectively managing heat and light can lead to more efficient solar energy systems with minimal impact on battery components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!