Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The CuOCl compound has been shown to be a high-temperature spin-driven multiferroic system, with a linear magneto-electric coupling. In this paper we propose a complete study of its magnetic structure. We derive the low energy magnetic Hamiltonian using multi-reference configuration interaction and the spin structure using Monte-Carlo simulations. Among the three magnetic structures proposed in the literature from different experimental results, our calculations support the incommensurate cycloid magnetic structure with a = (,0,0) propagation vector. Using symmetry analysis, we show that all experimental results (polarization, magnetic order, magneto-electric coupling) can be accounted for in the ''2 magnetic space group (2-fold axis along ).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4fd00042k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!