The RUNX2 transcription factor was discovered as an essential transcriptional regulator for commitment to osteoblast lineage cells and bone formation. Expression of RUNX2 in other tissues, such as breast, prostate, and lung, has been linked to oncogenesis, cancer progression, and metastasis. In this study, we sought to determine the extent of RUNX2 involvement in other tumors using a pan-cancer analysis strategy. We correlated RUNX2 expression and clinical-pathological parameters in human cancers by interrogating publicly available multiparameter clinical data. Our analysis demonstrated that altered RUNX2 expression or function is associated with several cancer types from different tissues. We identified three tumor types associated with increased RUNX2 expression and four other tumor types associated with decreased RUNX2 expression. Our pan-cancer analysis for RUNX2 revealed numerous other discoveries for RUNX2 regulation of different cancers identified in each of the pan-cancer databases. Both up and down regulation of RUNX2 was observed during progression of specific types of cancers in promoting the distinct types of cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2024054162 | DOI Listing |
Biomimetics (Basel)
January 2025
Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.
View Article and Find Full Text PDFCells
January 2025
Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology & School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology & Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
To investigate the effects of artificial light at night on the growth of mandibles in mice and its regulatory mechanisms. A mouse model of artificial light at night (night light pollution group) and normal lighting (normal light group) was established by controlling light exposure time, with 4 mice in each group. Micro-CT was employed to analyze the differences in bone quantities of the mandibles between the two groups.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Bone injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China. Electronic address:
Chemerin, an adipocyte-secreted adipokine, can regulate bone resorption and bone formation and is a promising therapy for postmenopausal osteoporosis. However, the effect of endogenous chemerin on intraosseous vascular remodeling in postmenopausal osteoporosis remains unclear. In this study, we investigated the effect of chemerin on osteogenesis formation and intraosseous vascular remodeling in ovariectomized Rarres2 knockout (Rarres2) mice.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
February 2025
Dept. of Cariology and Endodontics, Binzhou Medical University Hospital, Binzhou 256600, China.
Objectives: The mechanism of the odontogenic differentiation of apical papillary cells (APCs) stimulated by bioactive glass 45S5 is still unclear. This study aims to investigate the effect of autophagy on the odontogenic differentiation of APCs stimulated by bioactive glass 45S5.
Methods: APCs were isolated and cultured , and the cell origin was identified by flow cytometry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!