A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised Bayesian classification for models with scalar and functional covariates. | LitMetric

AI Article Synopsis

  • The research discusses an unsupervised classification method using a latent variable to categorize a scalar response into multiple components in a mixture model that includes both scalar and functional covariates.
  • It suggests a hierarchical modeling approach, where the first level uses parametric distributions for the scalar response and the second level utilizes a generalized linear model to handle the mixture probabilities.
  • Additionally, the method addresses issues with conventional approaches that treat functional covariates as vectors, proposing a Bayesian approach that reduces dimensionality through basis expansions, with practical applications in clinical trials and agricultural settings.

Article Abstract

We consider unsupervised classification by means of a latent multinomial variable which categorizes a scalar response into one of the L components of a mixture model which incorporates scalar and functional covariates. This process can be thought as a hierarchical model with the first level modelling a scalar response according to a mixture of parametric distributions and the second level modelling the mixture probabilities by means of a generalized linear model with functional and scalar covariates. The traditional approach of treating functional covariates as vectors not only suffers from the curse of dimensionality, since functional covariates can be measured at very small intervals leading to a highly parametrized model, but also does not take into account the nature of the data. We use basis expansions to reduce the dimensionality and a Bayesian approach for estimating the parameters while providing predictions of the latent classification vector. The method is motivated by two data examples that are not easily handled by existing methods. The first example concerns identifying placebo responders on a clinical trial (normal mixture model) and the other predicting illness for milking cows (zero-inflated mixture of the Poisson model).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271982PMC
http://dx.doi.org/10.1093/jrsssc/qlae006DOI Listing

Publication Analysis

Top Keywords

functional covariates
16
scalar functional
8
scalar response
8
mixture model
8
level modelling
8
model
6
scalar
5
functional
5
covariates
5
mixture
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!