H3K27me3-mediated epigenetic regulation in pluripotency maintenance and lineage differentiation.

Cell Insight

Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.

Published: August 2024

AI Article Synopsis

  • Cell fate determination is super complex and involves many things like signals, genes, and energy changes that help cells decide what type they will become.
  • A special mark called H3K27me3, managed by PRC2 and KDM6, is important for how cells change their identity.
  • The text talks about how H3K27me3 helps keep cells ready to transform and also how it influences early development through four main areas of study.

Article Abstract

Cell fate determination is an intricate process which is orchestrated by multiple regulatory layers including signal pathways, transcriptional factors, epigenetic modifications, and metabolic rewiring. Among the sophisticated epigenetic modulations, the repressive mark H3K27me3, deposited by PRC2 (polycomb repressive complex 2) and removed by demethylase KDM6, plays a pivotal role in mediating the cellular identity transition through its dynamic and precise alterations. Herein, we overview and discuss how H3K27me3 and its modifiers regulate pluripotency maintenance and early lineage differentiation. We primarily highlight the following four aspects: 1) the two subcomplexes PRC2.1 and PRC2.2 and the distribution of genomic H3K27 methylation; 2) PRC2 as a critical regulator in pluripotency maintenance and exit; 3) the emerging role of the eraser KDM6 in early differentiation; 4) newly identified additional factors influencing H3K27me3. We present a comprehensive insight into the molecular principles of the dynamic regulation of H3K27me3, as well as how this epigenetic mark participates in pluripotent stem cell-centered cell fate determination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278802PMC
http://dx.doi.org/10.1016/j.cellin.2024.100180DOI Listing

Publication Analysis

Top Keywords

pluripotency maintenance
12
lineage differentiation
8
cell fate
8
fate determination
8
h3k27me3-mediated epigenetic
4
epigenetic regulation
4
regulation pluripotency
4
maintenance lineage
4
differentiation cell
4
determination intricate
4

Similar Publications

Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins.

View Article and Find Full Text PDF

Aims/introduction: Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function.

View Article and Find Full Text PDF

Aging adversely affects the self-renewal and differentiation capabilities of stem cells, which impairs tissue regeneration as well as the homeostasis. Epigenetic mechanisms, specifically DNA methylation, play a key role in the maintenance of pluripotency in stem cells and regulation of pluripotency-related gene expression. Age-related modifications in methylation patterns could influence the expression of genes critical for stem cell potency maintenance, including transcription factors Nanog and Sox2.

View Article and Find Full Text PDF

Transgene expression in stem cells is a powerful means of regulating cellular properties and differentiation into various cell types. However, existing vectors for transgene expression in stem cells suffer from limitations such as the need for genomic integration, the transient nature of gene expression, and the inability to temporally regulate transgene expression, which hinder biomedical and clinical applications. Here we report a new class of RNA virus-based vectors for scalable and integration-free transgene expression in mouse embryonic stem cells (mESCs).

View Article and Find Full Text PDF

Capture primed pluripotency in guinea pig.

Stem Cell Reports

December 2024

Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China. Electronic address:

Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!