A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and Comparative Investigation of Hydroxyapatite/Carboxymethyl Cellulose (CaHA/CMC) Matrix for Soft Tissue Augmentation in a Rat Model. | LitMetric

AI Article Synopsis

  • The study focuses on creating an injectable subdermal implant material made of calcium hydroxyapatite (CaHA) and a carrier mix of carboxymethyl cellulose (CMC), glycerol, and water, aimed at enhancing soft tissue repair.
  • Various analytical methods, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), confirmed the material's structural integrity, particle size, and thermal stability, demonstrating that the CaHA particles were evenly distributed.
  • In animal testing, the CaHA/CMC gel showed promise by significantly improving skin thickness and collagen density compared to a similar product, indicating its potential as a biocompatible and biodegradable option for soft tissue applications.

Article Abstract

This study endeavors to develop an injectable subdermal implant material tailored for soft tissue repair and enhancement. The material consists of a ceramic phase of calcium hydroxyapatite (CaHA), which is biocompatible, 20-60 μm in size, known for its biocompatibility and minimal likelihood of causing foreign body reactions, antigenicity, and minimal inflammatory response, dispersed in a carrier phase composed of carboxymethyl cellulose (CMC), glycerol, and water for injection. The gel formulation underwent comprehensive characterization various analytical techniques. X-ray diffraction (XRD) was employed to identify crystalline phases and investigate the structural properties of ceramic particles, while thermogravimetric analysis (TGA) was conducted to evaluate the thermal stability and decomposition behavior of the final formulation. Scanning electron microscopy (SEM) was utilized to examine the surface morphology and particle size distribution, confirming the homogeneous dispersion of spherical CaHA particles within the matrix. SEM analysis revealed particle sizes ranging from approximately 20-60 μm. Elemental analysis confirmed a stoichiometric Ca/P ratio of 1.65 in the hydroxyapatite (HA) structure. Heavy metal content exhibited suitability for surgical implant use without posing toxicity risks. Rheological analysis revealed a storage modulus of 58.6 and 68.9 kPa and a loss modulus of 21.7 and 24.8 kPa at the frequencies of 2 and 5 Hz, respectively. 150 μL of sterilized CaHA/CMC was injected subcutaneously into rats and compared with a similar product, Crystalys, to assess its effects on soft tissues. Skin tissue samples of rats were collected at specific intervals throughout the study (30, 45, 60, 90 and 120 days), and examined histologically. Results demonstrated that CaHA/CMC gel led to a significant increase in dermal thickness, elastic fibers, and collagen density. Based on the findings, the formulated CaHA/CMC gel was found to be biocompatible, biodegradable, nonimmunogenic, nontoxic, safe, and effective, and represents a promising option for soft tissue repair and augmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270726PMC
http://dx.doi.org/10.1021/acsomega.4c01503DOI Listing

Publication Analysis

Top Keywords

soft tissue
12
tissue repair
8
20-60 μm
8
analysis revealed
8
caha/cmc gel
8
characterization comparative
4
comparative investigation
4
investigation hydroxyapatite/carboxymethyl
4
hydroxyapatite/carboxymethyl cellulose
4
caha/cmc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!