AI Article Synopsis

  • * In a study using advanced imaging techniques, it was observed that surfactant-promoted methane hydrates form hollow crystals that contribute to a porous structure, with significant insights gained across multiple scales of observation.
  • * The comparison of two surfactants, SDS and AOT, revealed that while AOT promotes faster hydrate formation, it is less effective for long-term gas storage compared to SDS, which is better suited for that purpose; both surfactants do not alter the cage filling of methane hydrate.

Article Abstract

Surfactants present in tiny amounts in the aqueous phase are known to be efficient gas hydrate promoters; yet, the promotion mechanisms are still not fully understood. Understanding and directing those mechanisms is key to the implementation of gas-hydrate-based applications such as gas storage and separation, secondary refrigeration or water treatment, and desalination. In this work, the growth at the water/gas interface and the porous structure of surfactant-promoted methane hydrate are observed by optical microscopy and Raman imaging in glass capillaries used as optical cells. Hollow crystals are continuously generated and expelled from the methane/water meniscus into the water or surfactant solution, where they ultimately form the skeleton of a porous medium filled with the solution. Unprecedented information is gathered over a range of scales from the molecular scale (crystal structure and cage filling) to the mesoscale (crystal morphologies, growth habits and pore sizes) and macroscale (rates and amounts of water and gas converted into hydrate and hydrate porosity). Following an early steady-state growth regime, a sudden order-of-magnitude increase of the conversion rate occurs, which is related to gaseous methane microbubbles being directly incorporated across the meniscus in the aqueous solution and later converted to methane hydrate. An assessment and comparison are made of the mechanisms and performance of two common anionic surfactants known to be efficient gas hydrate promoters, SDS (sodium dodecyl sulfate) and AOT (dioctylsulfosuccinate sodium or AerosolOcTyl). AOT provides a quicker but more limited conversion into hydrate than SDS, suggesting that it is more appropriate for continuous flow processes while SDS is better suited for gas storage applications. Raman spectra reveal that cage filling by methane of structure I methane hydrate is not affected by surfactants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270568PMC
http://dx.doi.org/10.1021/acsomega.4c03251DOI Listing

Publication Analysis

Top Keywords

gas hydrate
12
methane hydrate
12
hydrate
9
porous structure
8
structure surfactant-promoted
8
hydrate surfactants
8
efficient gas
8
hydrate promoters
8
gas storage
8
cage filling
8

Similar Publications

Decompression sickness of medical personnel of a hyperbaric centre: A report of cases during 25 years of activity.

Int Marit Health

January 2025

National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Poland.

Medical hyperbaric sessions for Hyperbaric Oxygen Therapy, conducted at 2.4-2.5 ATA for 80 to 120 minutes, expose staff to increased risk of DCS due to the inhalation of compressed air, which increases gas solubility in body fluids as per Henry's Law.

View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!