Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut allergy, though treatment is protracted and successful in only a subset of patients. Because the gut microbiome is linked to food allergy, we sought to identify fecal microbial predictors of POIT efficacy and to develop mechanistic insights into treatment response. Longitudinal functional analysis of the fecal microbiome of children (n=79) undergoing POIT in a first double-blind, placebo-controlled clinical trial, identified five microbial-derived bile acids enriched in fecal samples prior to POIT initiation that predicted treatment efficacy (AUC 0.71). Failure to induce disease remission was associated with a distinct fecal microbiome with enhanced capacity for bile acid deconjugation, amino acid metabolism, and increased peanut peptide degradation . Thus, microbiome mechanisms of POIT failure appear to include depletion of immunomodulatory secondary bile and amino acids and the antigenic peanut peptides necessary to promote peanut allergy desensitization and remission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275660 | PMC |
http://dx.doi.org/10.1101/2024.07.15.24309840 | DOI Listing |
Brain Behav Immun Health
February 2025
Department of Microbiology and Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, the Netherlands.
Prebiotic dietary fiber (PDF) may reduce feelings of stress or improve mood in healthy individuals. Yet gut intervention studies that focus on mood in daily life are lacking and few studies include extensive biological sample analyses to gain mechanistic insights. As part of a larger randomized placebo-controlled crossover study including healthy individuals, we explored the effects of 12 weeks of PDF (acacia gum and carrot powder) on everyday mood, as measured with ecological momentary assessment (EMA).
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
Nephrotic syndrome (NS) represents a prevalent syndrome among various chronic kidney disease pathologies and is known for its higher severity and worse prognosis compared with chronic glomerulonephritis. Understanding its pathogenesis and identifying more effective treatment modalities have long been a concern of kidney specialists. With the introduction of the gut-kidney axis concept and the progress in omics technologies, alterations in the gut microbiota have been observed in primary and secondary NS.
View Article and Find Full Text PDFJHEP Rep
January 2025
Massachusetts General Hospital, Division of Gastroenterology, Boston, MA, USA.
The last two decades have witnessed an explosion of microbiome research, including in hepatology, with studies demonstrating altered microbial composition in liver disease. More recently, efforts have been made to understand the association of microbiome features with clinical outcomes and to develop therapeutics targeting the microbiome. While microbiome therapeutics hold much promise, their unique features pose certain challenges for the design and conduct of clinical trials.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Breast Surgery and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Sichuan, China.
The composition of the gut microbiome differs from that of healthy individuals and is closely linked to the progression and development of breast cancer. Recent studies have increasingly examined the relationship between microbial communities and breast cancer. This study analyzed the research landscape of microbiome and breast cancer, focusing on 736 qualified publications from the Web of Science Core Collection (WoSCC).
View Article and Find Full Text PDFFront Microbiol
December 2024
VERO Program, Texas A&M University, Canyon, TX, United States.
Introduction: The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle.
Methods: Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!