This paper systematically investigates the changes in material properties during electrohydrodynamic (EHD) drying, the discharge characteristics of the EHD system as well as the active ingredients, textural properties (hardness, adhesiveness, etc.) and moisture distribution of yam under EHD, air drying and hot air drying were investigated. The results showed that the active particles and the ionized wind generated during the discharge process of the electrohydrodynamic drying device had a significant effect on the drying. Compared to thermal drying, 21 kV drying resulted in the most complete cellular structure, the best internal bound water content as well as textural properties of yam. It played a positive role in the retention of internal nutrients in yam, and the total phenol and allantoin contents were increased by 25.74% and 81.99%, respectively. These results elucidate the advantages of electrohydrodynamic drying in yam drying and provide a reference for the application of EHD in drying.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279706PMC
http://dx.doi.org/10.1016/j.fochx.2024.101622DOI Listing

Publication Analysis

Top Keywords

ehd drying
12
textural properties
12
drying
11
electrohydrodynamic ehd
8
active ingredients
8
ingredients textural
8
moisture distribution
8
distribution yam
8
air drying
8
electrohydrodynamic drying
8

Similar Publications

This paper explores the effect of ultrasound (US) assisted plasma-activated water (PAW) or deionized water (DW) pretreatment combined with electrohydrodynamics (EHD) on the drying of yam. The activity characteristics of four pretreatments (plasma activated water combined with ultrasound (PAW + US), plasma activated water (PAW), deionized water combined with ultrasound (DW + US), and deionized water (DW) (control)) and their effects on drying characteristics, rehydration rate, color, reducing sugars, total phenols, infrared spectra, and volatile compositions of yam under EHD drying process were investigated. The results showed that the media pretreaded by ultrasound (US) combined with plasma-activated water (PAW) has lower media of pH (53.

View Article and Find Full Text PDF

The investigation encompassed an examination of the drying durations, modeling, and quality attributes (color, rehydration capacity, microstructural features, total soluble solid [TSS], and pH values) of strawberry slices subjected to diverse drying methodologies, namely electrohydrodynamic (EHD), EHD-hot air, and hot air processes. Furthermore, 10 distinct thin-layer drying models were applied, and their goodness-of-fit was assessed to identify the most suitable model for the drying process. This analysis encompassed applying two distinct temperatures (50°C and 55°C), and voltage levels (20 and 30 kV).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the effects of various electrohydrodynamic drying (EHD) voltages (15, 25, and 35 kV) on the drying characteristics and quality of apricot abalone mushroom compared to hot air drying (HAD) and natural air drying (AD).
  • Results showed that while HAD was the fastest drying method, EHD helped preserve the mushroom's color and improved its protein structure and water retention significantly.
  • Additionally, the research identified 83 volatile organic compounds in the mushrooms, with alcohols and aldehydes being the most common, particularly at the highest voltage of 35 kV.
View Article and Find Full Text PDF

This paper systematically investigates the changes in material properties during electrohydrodynamic (EHD) drying, the discharge characteristics of the EHD system as well as the active ingredients, textural properties (hardness, adhesiveness, etc.) and moisture distribution of yam under EHD, air drying and hot air drying were investigated. The results showed that the active particles and the ionized wind generated during the discharge process of the electrohydrodynamic drying device had a significant effect on the drying.

View Article and Find Full Text PDF

Electrohydrodynamic (EHD) jet printing of solvent-based inks or melts allows for the producing of polymeric fiber-based two- and three-dimensional structures with sub-micrometer features, with or without conductive nanoparticles or functional materials. While solvent-based inks possess great material versatility, the stability of the EHD jetting process using such inks remains a major challenge that must be overcome before this technology can be deployed beyond research laboratories. Herein, we study the parameters that affect the stability of the EHD jet printing of polyethylene oxide (PEO) patterns using solvent-based inks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!