AI Article Synopsis

  • - Efficient motif discovery from ChIP-seq data relies heavily on selecting the right background nucleotide sequences, influencing the identification of target transcription factors and minimizing false positives from common motifs like simple sequence repeats.
  • - A comparison of two methods for generating background sequences—synthetic (shuffling nucleotides) and genomic (selecting from the reference genome)—showed that the genomic approach yielded better results in detecting known motifs and reducing non-specific motifs.
  • - The study implemented a web service called AntiNoise to facilitate the extraction of genomic background sequences for various eukaryotic genomes, proving particularly effective for plants when compared to mammals.

Article Abstract

Efficient motif discovery from the results of wide-genome mapping of transcription factor binding sites (ChIP-seq) is dependent on the choice of background nucleotide sequences. The foreground sequences (ChIP-seq peaks) represent not only specific motifs of target transcription factors, but also the motifs overrepresented throughout the genome, such as simple sequence repeats. We performed a massive comparison of the 'synthetic' and 'genomic' approaches to generate background sequences for motif discovery. The 'synthetic' approach shuffled nucleotides in peaks, while in the 'genomic' approach selected sequences from the reference genome randomly or only from gene promoters according to the fraction of A/T nucleotides in each sequence. We compiled the benchmark collections of ChIP-seq datasets for mouse, human and Arabidopsis, and performed motif discovery. We showed that the genomic approach has both more robust detection of the known motifs of target transcription factors and more stringent exclusion of the simple sequence repeats as possible non-specific motifs. The advantage of the genomic approach over the synthetic approach was greater in plants compared to mammals. We developed the AntiNoise web service (https://denovosea.icgbio.ru/antinoise/) that implements a genomic approach to extract genomic background sequences for twelve eukaryotic genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282361PMC
http://dx.doi.org/10.1093/nargab/lqae090DOI Listing

Publication Analysis

Top Keywords

motif discovery
16
background sequences
12
genomic approach
12
genomic background
8
motifs target
8
target transcription
8
transcription factors
8
simple sequence
8
sequence repeats
8
sequences
6

Similar Publications

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear.

View Article and Find Full Text PDF

Malaria, a life-threatening disease caused by Plasmodium parasites, continues to pose a significant global health threat, with nearly 250 million infections and over 600 000 deaths reported annually by the WHO. Fighting malaria is particularly challenging partly due to the complex life cycle of the parasite. However, technological breakthroughs such as the development of the nucleoside-modified mRNA lipid nanoparticle (mRNA-LNP) vaccine platform, along with the discovery of novel conserved Plasmodium antigens such as the E140 protein, present new opportunities in malaria prevention.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) transporters: structures and roles in bacterial pathogenesis.

J Zhejiang Univ Sci B

October 2024

Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.

View Article and Find Full Text PDF

Enhancing NK cell-mediated tumor killing of B7-H6 cells with bispecific antibodies targeting allosteric sites of NKp30.

Mol Ther Oncol

March 2025

Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany.

In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6 tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!