Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Total knee arthroplasty (TKA) is a commonly performed procedure that has traditionally utilized reproducible steps using a set of mechanical instruments. The number of TKAs performed using robotic assistance is increasing, and augmented reality (AR) navigation systems are being developed. Hierarchical task analysis (HTA) aims to describe the steps of a specific task in detail to reduce errors and ensure reproducibility. The objective of this study was to develop and validate HTAs for conventional, robotic-assisted, and AR-navigated TKA.
Methods: The development of HTAs for conventional TKA involved an iterative review process that incorporated the input of 4 experienced arthroplasty surgeons. The HTAs were then adapted for robotic-assisted and AR-navigated TKA by incorporating specific steps associated with the use of these systems. The accuracy and completeness of the HTAs were validated by observing 10 conventional and 10 robotic-assisted TKA procedures.
Results: HTAs for conventional, robotic-assisted, and AR-navigated TKA were developed and validated. The resulting HTAs provide a comprehensive and standardized plan for each procedure and can aid in the identification of potential areas of inefficiency and risk. Robotic-assisted and AR-navigated approaches require additional steps, and there are an increased number of instances where complications may occur.
Conclusions: The HTAs developed in this study can provide valuable insights into the potential pitfalls of robotic-assisted and AR-navigated TKA procedures. As AR-navigation systems are developed, they should be optimized by critical analysis using the developed HTAs to ensure maximum efficiency, reliability, accessibility, reduction of human error, and costs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282423 | PMC |
http://dx.doi.org/10.1016/j.artd.2024.101389 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!