bioRxiv
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
Published: July 2024
Conventional laboratory protein detection techniques are not suitable for point-of-care (POC) use because they require expensive equipment and laborious protocols, and existing POC assays suffer from long development timescales. Here, we describe a modular cell-free biosensing platform for generalizable protein detection that we call TLISA (7 RNA polymerase-inked mmunoensing ssay), designed for extreme flexibility and equipment-free use. TLISA uses a split T7 RNA polymerase fused to affinity domains against a protein. The target antigen drives polymerase reassembly, inducing reporter expression. We characterize the platform, then demonstrate its modularity by using 16 affinity domains against four different antigens with minimal protocol optimization. We show TLISA is suitable for POC use by sensing human biomarkers in serum and saliva with a colorimetric readout within one hour and by demonstrating functionality after lyophilization. Altogether, this technology could have potentially revolutionary impacts, enabling truly rapid, reconfigurable, equipment-free detection of virtually any protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275916 | PMC |
http://dx.doi.org/10.1101/2024.07.19.604303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.