We report a universal strategy for 2D chromatin sequencing, to increase uniform data analyses and sharing across labs, and to facilitate highly quantitative comparisons across experimental conditions. Within our system, we provide wetlab and drylab tools for researchers to establish and analyze protein-genome binding data with PerCell ChIP-seq. Our methodology is virtually no cost and flexible, enabling rapid, quantitative, internally normalized chromatin sequencing to catalyze project development in a variety of systems, including in vivo zebrafish epigenomics and cancer cell epigenomics. While we highlight utility in these key areas, our methodology is flexible enough such that rapid comparisons of cellular spike-in versus non spike-in are possible, and generalizability to nuclease-based 2D chromatin sequencing would also be possible within the framework of our pipeline. Through the use of well-defined cellular ratios containing orthologous species' chromatin, we enable cross-species comparative epigenomics and highly quantitative low-cost chromatin sequencing with utility across a range of disciplines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275836PMC
http://dx.doi.org/10.1101/2024.07.12.603283DOI Listing

Publication Analysis

Top Keywords

chromatin sequencing
20
highly quantitative
12
protein-genome binding
8
chromatin
6
sequencing
5
quantitative measurement
4
measurement differential
4
differential protein-genome
4
binding percell
4
percell chromatin
4

Similar Publications

LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats.

Brief Bioinform

November 2024

Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, No. 97 Buxin Road, Dapeng New District, Shenzhen 518124, China.

Identifying the regulatory effects of noncoding variants presents a significant challenge. Recently, the accumulation of epigenomic profiling data in wheat has provided an opportunity to model the functional impacts of these variants. In this study, we introduce Language of Genome for Wheat (LOGOWheat), a deep learning-based tool designed to predict the regulatory effects of noncoding variants in wheat.

View Article and Find Full Text PDF

The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

GAS41 promotes ITGA4-mediated PI3K/Akt/mTOR signaling pathway and glioma tumorigenesis.

Biochem Pharmacol

January 2025

Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; International Center of Future Science, Jilin University, Changchun, 130012, China. Electronic address:

Glioma Amplified Sequence 41 (GAS41) is a chromatin-associated protein that belongs to the YEATS domain family of proteins and is frequently amplified in various tumors. However, its biological function and carcinogenic mechanism in gliomas are not fully understood. In this study, we revealed that GAS41 was upregulated in human glioma tissues and cell lines, and higher expression of GAS41 was significantly associated with poor clinical prognosis.

View Article and Find Full Text PDF

Response eQTLs, chromatin accessibility, and 3D chromatin structure in chondrocytes provide mechanistic insight into osteoarthritis risk.

Cell Genom

January 2025

Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Electronic address:

Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!