A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CELLNET technology: Spatially organized, functional 3D networks at single cell resolution. | LitMetric

Unlabelled: Cells possess the remarkable ability to generate tissue-specific 3D interconnected networks and respond to a wide range of stimuli. Understanding the link between the spatial arrangement of individual cells and their networks' emergent properties is necessary for the discovery of both fundamental biology as well as applied therapeutics. However, current methods spanning from lithography to 3D photo-patterning to acoustofluidic devices are unable to generate interconnected and organized single cell 3D networks within native extracellular matrix (ECM). To address this challenge, we report a novel technology coined as CELLNET. This involves the generation of crosslinked collagen within multi-chambered microfluidic devices followed by femtosecond laser ablation of 3D microchannel networks and cell seeding. Using model cells, we show that cell migrate within ablated networks within hours, self-organize and form viable, interconnected, 3D networks in custom architectures such as square grid, concentric circle, parallel lines, and spiral patterns. Heterotypic CELLNETs can also be generated by seeding multiple cell types in side-chambers of the devices. The functionality of cell networks can be studied by monitoring the real-time calcium signaling response of individual cells and signal propagation within CELLNETs when subjected to flow stimulus alone or a sequential combination of flow and biochemical stimuli. Furthermore, user-defined disrupted CELLNETs can be generated by lethally injuring target cells within the 3D network and analyzing the changes in their signaling dynamics. As compared to the current self-assembly based methods that exhibit high variability and poor reproducibility, CELLNETs can generate organized 3D single-cell networks and their real-time signaling responses to a range of stimuli can be accurately captured using simple cell seeding and easy-to-handle microfluidic devices. CELLNET, a new technology agnostic of cell types, ECM formulations, 3D cell-connectivity designs, or location and timing of network disruptions, could pave the way to address a range of fundamental and applied bioscience applications.

Teaser: New technology to generate 3D single cell interconnected and disrupted networks within natural extracellular matrix in custom configurations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275935PMC
http://dx.doi.org/10.1101/2024.07.12.603216DOI Listing

Publication Analysis

Top Keywords

single cell
12
networks
9
cell
9
cellnet technology
8
interconnected networks
8
range stimuli
8
individual cells
8
cell networks
8
extracellular matrix
8
microfluidic devices
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!