Background: Neurodevelopmental disorders have a strong male bias that is poorly understood. Placenta is a rich source of molecular information about environmental interactions with genetics (including biological sex), that affect the developing brain. We investigated placental-brain transcriptional responses in an established mouse model of prenatal exposure to a human-relevant mixture of polychlorinated biphenyls (PCBs).
Results: To understand sex, tissue, and dosage effects in embryonic (E18) brain and placenta by RNAseq, we used weighted gene correlation network analysis (WGCNA) to create correlated gene networks that could be compared across sex or tissue. WGCNA revealed that expression within most correlated gene networks was significantly and strongly associated with PCB exposures, but frequently in opposite directions between male-female and placenta-brain comparisons. In both WGCNA and differentially expressed gene analyses, male brain showed more PCB-induced transcriptional changes than male placenta, but the reverse pattern was seen in females. Furthermore, non-monotonic dose responses to PCBs were observed in most gene networks but were most prominent in male brain. The transcriptomic effects of low dose PCB exposure were significantly reversed by dietary folic acid supplementation across both sexes, but these effects were strongest in female placenta. PCB-dysregulated and folic acid-reversed gene networks were commonly enriched in functions in metabolic pathways involved in energy usage and translation, with female-specific protective effects enriched in PPAR, thermogenesis, glycerolipids, and O-glycan biosynthesis, as opposed to toxicant responses in male brain.
Conclusions: The female protective effect in prenatal PCB exposures appears to be mediated by dose-dependent sex differences in transcriptional modulation of metabolism in placenta.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275969 | PMC |
http://dx.doi.org/10.1101/2024.07.14.603326 | DOI Listing |
Prev Nutr Food Sci
December 2024
School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea.
, a medicinal plant traditionally used in Southeast Asia, exerts protective effects against various inflammatory diseases, primarily due to its rich alkaloid content. Despite substantial evidence supporting its anti-inflammatory properties, the biological activities of are unclear. This study aimed to elucidate anticolitis mechanisms of alkaloids (CFAs) using an integrative approach of network pharmacology and molecular docking analyses.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Urology, The Second People's Hospital of Meishan City, Meishan, Sichuan, China.
Background: Prostate cancer (PCa) is a multifactorial and heterogeneous disease, ranking among the most prevalent malignancies in men. In 2020, there were 1,414,259 new cases of PCa worldwide, accounting for 7.3% of all malignant tumors.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.
Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.
View Article and Find Full Text PDFBioinform Adv
December 2024
Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
Motivation: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a ground-breaking genome editing tool, which has revolutionized cell and gene therapies. One of the essential components involved in this system that ensures its success is the design of an optimal single-guide RNA (sgRNA) with high on-target cleavage efficiency and low off-target effects. This is challenging as many conditions need to be considered, and empirically testing every design is time-consuming and costly.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
January 2025
Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.
Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.
Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.
Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!