Intrinsically disordered proteins and peptides play key roles in biology, but the lack of defined structures and the high variability in sequence and conformational preferences has made targeting such systems challenging. We describe a general approach for designing proteins that bind intrinsically disordered protein regions in diverse extended conformations with side chains fitting into complementary binding pockets. We used the approach to design binders for 39 highly diverse unstructured targets and obtain designs with pM to 100 nM affinities in 34 cases, testing ∼22 designs per target (including polar targets). The designs function in cells and as detection reagents, and are specific for their intended targets in all-by-all binding experiments. Our approach is a major step towards a general solution to the intrinsically disordered protein and peptide recognition problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275711PMC
http://dx.doi.org/10.1101/2024.07.15.603480DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
16
disordered protein
8
targets designs
8
design intrinsically
4
disordered
4
disordered region
4
region binding
4
binding proteins
4
proteins intrinsically
4
disordered proteins
4

Similar Publications

We use a combination of Brownian dynamics (BD) simulation results and deep learning (DL) strategies for the rapid identification of large structural changes caused by missense mutations in intrinsically disordered proteins (IDPs). We used ∼6500 IDP sequences from MobiDB database of length 20-300 to obtain gyration radii from BD simulation on a coarse-grained single-bead amino acid model (HPS2 model) used by us and others [Dignon, G. L.

View Article and Find Full Text PDF

Proteins with chemically regulatable phase separation are of great interest in the fields of biomolecular condensates and synthetic biology. Intrinsically disordered proteins (IDPs) are the dominating building blocks of biomolecular condensates which often lack orthogonality and small-molecule regulation desired to create synthetic biomolecular condensates or membraneless organelles (MLOs). Here, we discover a well-folded globular protein, lipoate-protein ligase A (LplA) from E.

View Article and Find Full Text PDF

Atomistic molecular dynamics simulations of intrinsically disordered proteins.

Curr Opin Struct Biol

March 2025

Department of Chemistry and Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA; Department of Physics, University of Illinois Chicago, Chicago, IL, 60607, USA. Electronic address:

Recent years have seen remarkable gains in the accuracy of atomistic molecular dynamics (MD) simulations of intrinsically disordered proteins (IDPs) and expansion in the types of calculated properties that can be directly compared with experimental measurements. These advances occurred due to the use of IDP-tested force fields and the porting of MD simulations to GPUs and other computational technologies. All-atom MD simulations are now explaining the sequence-dependent dynamics of IDPs; elucidating the mechanisms of their binding to other proteins, nucleic acids, and membranes; revealing the modes of drug action on them; and characterizing their phase separation.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of upper and lower motoneurons. The four most frequently mutated genes causing familial ALS (fALS) are C9orf72, FUS, SOD1, and TARDBP. Some of the related wild-type proteins comprise intrinsically disordered regions (IDRs) which favor their assembly in liquid droplets-the biophysical mechanism behind the formation of physiological granules such as stress granules (SGs).

View Article and Find Full Text PDF

Nonbonded Parameter Optimization Improving Simulation of Intrinsically Disordered Phosphoproteins.

J Chem Inf Model

March 2025

State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.

Phosphorylated proteins play a crucial role in numerous cellular processes, acting as key regulators in signal transduction networks, cell expansion, and various biochemical reactions. Molecular dynamics (MD) simulations are powerful tools for exploring the dynamic conformations of phosphoproteins. However, conventional force fields often underestimate the radii of gyration (Rg) of phosphoproteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!