Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Computational protein design efforts continue to make remarkable advances, yet the discovery of high-affinity binders typically requires large-scale experimental screening of site-saturated mutant (SSM) libraries. Here, we explore how massively parallel free energy methods can be used for affinity maturation of designed binding proteins. Using an expanded ensemble (EE) approach, we perform exhaustive relative binding free energy calculations for SSM variants of three miniproteins designed to bind influenza A H1 hemagglutinin by Chevalier et al. (2017). We compare our predictions to experimental ΔΔ values inferred from a Bayesian analysis of the high-throughput sequencing data, and to state-of-the-art predictions made using the Flex ddG Rosetta protocol. A systematic comparison reveals prediction accuracies around 2 kcal/mol, and identifies net charge changes, large numbers of alchemical atoms, and slow side chain conformational dynamics as key contributors to the uncertainty of the EE predictions. Flex ddG predictions are more accurate on average, but highly conservative. In contrast, EE predictions can better classify stabilizing and destabilizing mutations. We also explored the ability of SSM scans to rationalize known affinity-matured variants containing multiple mutations, which are non-additive due to epistatic effects. Simple electrostatic models fail to explain non-additivity, but observed mutations are found at positions with higher Shannon entropies. Overall, this work suggests that simulation-based free energy methods can provide predictive information for affinity maturation of designed miniproteins, with many feasible improvements to the efficiency and accuracy within reach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275842 | PMC |
http://dx.doi.org/10.1101/2024.05.17.594758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!