AI Article Synopsis

  • * This study aimed to explore how deficiencies in dietary one-carbon nutrients like folic acid and choline during pregnancy affect offspring's neurological responses following ischemic stroke.
  • * Female mice were fed either a control or deficient diet, and after inducing stroke in their 3-month-old offspring, the research found reduced levels of MMP-2 inflammation markers in both blood and brain tissue, suggesting maternal nutrient deficiencies impact offspring inflammation post-stroke.

Article Abstract

Ischemic stroke is one of the leading causes of disability and death globally, with a rising incidence in younger age groups. It's well known that maternal diet during pregnancy and lactation is vital for the early neurodevelopment of offspring. One-carbon (1C) metabolism, including folic acid and choline, plays a vital role in closure of the neural tube . However, the impact of maternal dietary deficiencies in 1C on offspring neurological function following ischemic stroke later in life remains undefined. The aim of this study was to investigate inflammation in blood and brain tissue of offspring from mothers deficient in dietary folic acid or choline. Female mice were maintained on either a control or deficient diets prior to and during pregnancy and lactation. When offspring were 3-months of age, ischemic stroke was induced. One and half months later blood and brain tissue were collected. We measured levels of matrix-metalloproteases (MMP)-2 and 9 in both plasma and brain tissue, and report reduced levels of MMP-2 in both, with no changes observed in MMP-9. This observation supports our working hypothesis that maternal dietary deficiencies in folic acid or choline during early neurodevelopment impact the levels of inflammation in offspring after ischemic stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275792PMC
http://dx.doi.org/10.1101/2024.07.15.603575DOI Listing

Publication Analysis

Top Keywords

brain tissue
16
ischemic stroke
16
maternal dietary
12
blood brain
12
folic acid
12
acid choline
12
reduced levels
8
levels mmp-2
8
pregnancy lactation
8
early neurodevelopment
8

Similar Publications

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

Cheek swabs, heterogeneous samples consisting primarily of buccal epithelial cells, are widely used in pediatric DNA methylation studies and biomarker creation. However, the decrease in buccal proportion with age in adults remains unexamined in childhood. We analyzed cheek swabs from 4626 typically developing children 2-months to 20-years-old.

View Article and Find Full Text PDF

Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.

View Article and Find Full Text PDF

Background: The oxygen reactivity index (ORx) reflects the correlation between focal brain tissue oxygen (pbtO) and the cerebral perfusion pressure (CPP). Previous, small cohort studies were conflicting on whether ORx conveys cerebral autoregulatory information and if it is related to outcome in traumatic brain injury (TBI). Thus, we aimed to investigate these issues in a larger TBI cohort.

View Article and Find Full Text PDF

Uptake and Transpiration of Solid and Hollow SiO Nanoparticles by Terrestrial Plant (Apium Graveolens var. secalinum).

Chemosphere

January 2025

Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong Province, China. Electronic address:

Recent studies have raised concerns about the potential toxicity of amorphous silica (SiO) nanoparticles (NPs). This investigation explores the uptake, transport, and transpiration of silica NPs in Apium graveolens var. secalinum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!