A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural comparisons of human and mouse fungiform taste buds. | LitMetric

Structural comparisons of human and mouse fungiform taste buds.

bioRxiv

Dept. Cell & Devel. Biology, Rocky Mountain Taste & Smell Center, Univ. Colorado School of Medicine, Aurora, CO 80045.

Published: July 2024

Taste buds are commonly studied in rodent models, but some differences exist between mice and humans in terms of gustatory mechanisms and sensitivities. Whether these functional differences are reflected in structural differences between species is unclear. Using immunofluorescent image stacks, we compared morphological and molecular characteristics of mouse and human fungiform taste buds. The results suggest that while the general features of fungiform taste buds are similar between mice and humans, several characteristics differ significantly. Human taste buds are larger and taller than those of mice, yet they contain similar numbers of taste cells. Taste buds in humans are more heavily innervated by gustatory nerve fibers expressing the purinergic receptor P2X3 showing a 40% higher innervation density than in mice. Like Type II cells of mice, a subset (about 30%) of cells in human taste buds is immunoreactive for PLCβ2. These PLCβ2-immunoreactive cells display CALHM1-immunoreactive puncta closely apposed to gustatory nerve fibers suggestive of channel-type synapses described in mice. These puncta, used as a measure of synaptic contact, are however significantly larger in humans compared to mice. Altogether these findings suggest that while many similarities exist in the structural organization of murine and human fungiform taste buds, significant differences do exist in taste bud size, innervation density, and size of synaptic contacts that may impact gustatory signal transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275760PMC
http://dx.doi.org/10.1101/2024.07.10.602971DOI Listing

Publication Analysis

Top Keywords

taste buds
32
fungiform taste
16
taste
10
buds
8
differences exist
8
mice humans
8
human fungiform
8
human taste
8
gustatory nerve
8
nerve fibers
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!