A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing Ti/TiN Multilayers for UV, Optical and Near-IR Microwave Kinetic Inductance Detectors. | LitMetric

Microwave Kinetic Inductance Detectors (MKIDs) combine significant advantages for photon detection like single photon counting, single pixel energy resolution, vanishing dark counts and µs time resolution with a simple design and the feasibility to scale up into the megapixel range. But high quality MKID fabrication remains challenging as established superconductors tend to either have intrinsic disadvantages, are challenging to deposit or require very low operating temperatures. As alternating stacks of thin Ti and TiN films have shown very impressive results for far-IR and sub-mm MKIDs, they promise significant improvements for UV, visible to near-IR MKIDs as well, especially as they are comparably easy to fabricate and control. In this paper, we present our ongoing project to adapt proximity coupled superconducting films for photon counting MKIDs. Some of the main advantages of Ti/TiN multilayers are their good control of critical temperature ( ) and their great homogeneity of even over large wafers, promising improved pixel yield especially for large arrays. We demonstrate the effect different temperatures during fabrication have on the detector performance and discuss excess phase noise observed caused by surface oxidization of exposed Si. Our first prototypes achieved photon energy resolving powers of up to 3.1 but turned out to be much too insensitive. As the work presented is still in progress, we also discuss further improvements planned for the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282137PMC
http://dx.doi.org/10.1007/s10909-024-03121-1DOI Listing

Publication Analysis

Top Keywords

ti/tin multilayers
8
microwave kinetic
8
kinetic inductance
8
inductance detectors
8
photon counting
8
optimizing ti/tin
4
multilayers optical
4
optical near-ir
4
near-ir microwave
4
detectors microwave
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!