AI Article Synopsis

  • The study investigates the role of 5-hydroxymethylcytosine (5hmC) in Parkinson's disease (PD), emphasizing its importance in the brain and its potential link to neurotoxic responses.
  • Researchers identified 1,030 interaction differentially modified cytosines (iDMCs) that exhibit paired changes in 5hmC and 5-methylcytosine (5mC), mapping to 695 genes relevant to PD, including genes previously implicated in the disease.
  • The findings suggest that these epigenetic changes could contribute to the development of idiopathic PD, with many identified genes also playing roles in synaptic functions.

Article Abstract

Background: The majority of Parkinson's disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing β and β data.

Results: We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including (DNAJC6), a familial PD gene, and (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS.

Conclusions: These data potentially link epigenetic regulation of the and loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275970PMC
http://dx.doi.org/10.21203/rs.3.rs-4572401/v1DOI Listing

Publication Analysis

Top Keywords

genes including
8
parietal cortex
8
paired changes
8
5mc 5hmc
8
idmc-containing genes
8
epigenetic regulation
8
5hmc
6
genes
5
epigenetic
5
parkinson's disease-associated
4

Similar Publications

Genetic and species rearrangements in microbial consortia impact biodegradation potential.

ISME J

January 2025

Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.

Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.

View Article and Find Full Text PDF

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!