Identifying along which lineages shifts in diversification rates occur is a central goal of comparative phylogenetics; these shifts may coincide with key evolutionary events such as the development of novel morphological characters, the acquisition of adaptive traits, polyploidization or other structural genomic changes, or dispersal to a new habitat and subsequent increase in environmental niche space. However, while multiple methods now exist to estimate diversification rates and identify shifts using phylogenetic topologies, the appropriate use and accuracy of these methods are hotly debated. Here we test whether five Bayesian methods-Bayesian Analysis of Macroevolutionary Mixtures (BAMM), two implementations of the Lineage-Specific Birth-Death-Shift model (LSBDS and PESTO), the approximate Multi-Type Birth-Death model (MTBD; implemented in BEAST2), and the Cladogenetic Diversification Rate Shift model (ClaDS2)-produce comparable results. We apply each of these methods to a set of 65 empirical time-calibrated phylogenies and compare inferences of speciation rate, extinction rate, and net diversification rate. We find that the five methods often infer different speciation, extinction, and net-diversification rates. Consequently, these different estimates may lead to different interpretations of the macroevolutionary dynamics. The different estimates can be attributed to fundamental differences among the compared models. Therefore, the inference of shifts in diversification rates is strongly method dependent. We advise biologists to apply multiple methods to test the robustness of the conclusions or to carefully select the method based on the validity of the underlying model assumptions to their particular empirical system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275465PMC
http://dx.doi.org/10.1093/evlett/qrad044DOI Listing

Publication Analysis

Top Keywords

diversification rates
12
shifts diversification
8
multiple methods
8
diversification rate
8
diversification
6
methods
6
rates
5
commonly bayesian
4
bayesian diversification
4
diversification methods
4

Similar Publications

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

A thorny tale: The origin and diversification of Cirsium (Compositae).

Mol Phylogenet Evol

January 2025

Autonomous University of Barcelona, Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC by IBB - Cerdanyola del Vallès, Spain.

Widely distributed plant genera offer insights into biogeographic processes and biodiversity. The Carduus-Cirsium group, with over 600 species in eight genera, is diverse across the Holarctic regions, especially in the Mediterranean Basin, Southwest Asia, Japan, and North America. Despite this diversity, evolutionary and biogeographic processes within the group, particularly for the genus Cirsium, remain underexplored.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how intercontinental movements of certain plant lineages (Hydrangeaceae and Loasaceae) may promote ecological opportunities and species diversity.
  • Researchers reconstructed a phylogeny using molecular data and analyzed speciation rates, finding that while some clades showed increased diversification, it wasn't linked to new continental colonization.
  • The findings suggest that climate change in the Miocene played a more significant role in species diversification rather than dispersal across continents, indicating that changes in habitats drove evolutionary changes instead of location shifts.
View Article and Find Full Text PDF

Background: The St-genome-sharing taxa are highly complex group of the species with the St nuclear genome and monophyletic origin in maternal lineages within the Triticeae, which contains more than half of polyploid species that distributed in a wide range of ecological habitats. While high level of genetic heterogeneity in plastome DNA due to a reticulate evolutionary event has been considered to link with the richness of the St-genome-sharing taxa, the relationship between the dynamics of diversification and molecular evolution is lack of understanding.

Results: Here, integrating 106 previously and 12 newly sequenced plastomes representing almost all previously recognized genomic types and genus of the Triticeae, this study applies phylogenetic reconstruction methods in combination with lineage diversification analyses, estimate of sequence evolution, and gene expression to investigate the dynamics of diversification in the tribe.

View Article and Find Full Text PDF

Geographic Variation in Signal Preferences in the Tropical Katydid .

Biology (Basel)

December 2024

Department of Biological Sciences, University of Missouri, 207 Tucker Hall, Columbia, MO 65211, USA.

In communication systems, the signal and preference for the signal have to match, limiting phenotypic variation. Yet, communication systems evolve, but the mechanisms of how phenotypic variation can come into existence while not disrupting the match are poorly understood. Geographic variation in communication can provide insights into the diversification of these systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!