The fight against bacterial antibiotic resistance must be given critical attention to avert the current and emerging crisis of treating bacterial infections due to the inefficacy of clinically relevant antibiotics. Intrinsic genetic mutations and transferrable antibiotic resistance genes (ARGs) are at the core of the development of antibiotic resistance. However, traditional alignment methods for detecting ARGs have limitations. Artificial intelligence (AI) methods and approaches can potentially augment the detection of ARGs and identify antibiotic targets and antagonistic bactericidal and bacteriostatic molecules that are or can be developed as antibiotics. This review delves into the literature regarding the various AI methods and approaches for identifying and annotating ARGs, highlighting their potential and limitations. Specifically, we discuss methods for (1) direct identification and classification of ARGs from genome DNA sequences, (2) direct identification and classification from plasmid sequences, and (3) identification of putative ARGs from feature selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272472PMC
http://dx.doi.org/10.3389/fmicb.2024.1437602DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
16
artificial intelligence
8
resistance genes
8
methods approaches
8
direct identification
8
identification classification
8
args
6
antibiotic
5
intelligence tools
4
identification
4

Similar Publications

Background: Pouchitis is common among patients with ulcerative colitis (UC) who have had colectomy with ileal pouch-anal anastomosis. Antibiotics are first-line therapy for pouch inflammation, increasing the potential for gut colonization with multi-drug resistant organisms (MDRO). Fecal microbial transplant (FMT) is being studied in the treatment of pouchitis and in the eradication of MDRO.

View Article and Find Full Text PDF

Staphylococcus pseudintermedius is a global animal pathogen. Traditional identification methods are time-consuming necessitating a more efficient approach. This study validated and enhanced the loop-mediated isothermal amplification (LAMP) technique by integration it with a lateral flow dipstick (LFD) assay for the detection of S.

View Article and Find Full Text PDF

is a significant healthcare-associated pathogen, notable for its diverse virulence and antibiotic resistance profiles. This study aimed to characterize the genotypic and phenotypic diversity of isolates and evaluate their virulence using the model. Biomass production, metabolic activity, capsule formation, and siderophore production were assessed in 27 .

View Article and Find Full Text PDF

Tuberculosis (TB) is historically the world's deadliest infectious disease. New TB drugs that can avoid pre-existing resistance are desperately needed. The β-lactams are the oldest and most widely used class of antibiotics to treat bacterial infections but, for a variety of reasons, they were largely ignored until recently as a potential treatment option for TB.

View Article and Find Full Text PDF

Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!