This study explores the utilization of the organic conductive molecule Polypyrrole (PPy) for the modification of Indium Gallium Zinc Oxide (IGZO) nanoparticles, aiming to develop highly sensitive ozone sensors. Pyrrole (Py) molecules undergo polymerization, resulting in the formation of extended chains of PPy that graft onto the surface of IGZO nanoparticles. This interaction effectively diminishes oxygen vacancies on the IGZO surface, thereby promoting the crystallization of the IGZO (1114) facets. The resultant structure exhibits promising potential for achieving high-performance wideband semiconductor gas sensors. The IGZO/PPy device forms a Straddling Gap heterojunction, facilitating enhanced electron transfer between IGZO and ozone molecules. Notably, the adsorption and desorption of ozone gas occur efficiently at a low temperature of approximately 25 °C, obviating the need for additional energy typically associated with wide bandgap semiconductor materials. Density Functional Theory (DFT) calculations attribute this efficiency to the enhanced number of active sites for ozone adsorption, facilitated by hydrogen bonds. The substantial conductivity of PPy, combined with its planar ring structure, induces positively charged polarization on the IGZO side upon ozone adsorption. The resultant device exhibits exceptional sensitivity, boasting a 4-fold improvement compared to sensors reliant solely on IGZO. Additionally, the response time is significantly reduced by a factor of 10, underscoring the practical viability and enhanced performance of the IGZO/PPy sensor field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c07392 | DOI Listing |
J Environ Manage
January 2025
College of Environment, Hohai University, Nanjing, 210098, PR China; Suzhou Research Institute, Hohai University, Suzhou, 215100, PR China; Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China. Electronic address:
The ozone micro-bubbles (OCBs) technology is increasingly gaining traction as a promising alternative method for organic compounds removal in wastewater. Nevertheless, there is a scarcity of literature addressing the molecular-level transformation of organic compounds during OCBs treatment. In this work, the secondary effluent from a wastewater treatment plant was treated with ozone milli-bubbles (OLBs) and OCBs, and the fate of organic compounds at the molecular level was investigated using comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS).
View Article and Find Full Text PDFDalton Trans
January 2025
Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Viet Nam.
Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.
View Article and Find Full Text PDFERJ Open Res
January 2025
Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
Introduction: Exposure to environmental factors ( air pollution and second-hand tobacco smoke) have been associated with impaired lung function. However, the impact of environmental factors on lung health is usually evaluated separately and not with an exposomic framework. In this regard, breath analysis could be a noninvasive tool for biomonitoring of global human environmental exposure.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Slovak Hydrometeorological Institute, Jeséniova 17, Bratislava, 833 15, Slovakia.
This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!