Epithelial-mesenchymal transition (EMT) is a critical process for cancer progression, which is crucial in inhibiting the immunity in tumors and further boosting tumor metastasis. The suppression of EMT represents a promising strategy for inhibiting metastatic tumors. Herein, a series of new canadine platinum(IV) conjugates with potent antiproliferative and antimetastatic activities were developed, which activated by suppressing EMT and provoking immune response in tumors besides causing DNA injury. The complexes could covalently conjugate to DNA and induce mitochondria-mediated apoptosis via Bcl-2/Bax/caspase3 signaling. The EMT process was remarkably inhibited by suppressing the Wnt/β-catenin pathway, reversing the inflammatory tumor microenvironment, and inhibiting the HIF-1α pathway, which further resulted in the inhibited angiogenesis in tumors. Moreover, the antitumor immunity was elevated by blocking immune checkpoints PD-L1 and CD47 accompanied by the improvement of CD3 and CD8 T lymphocytes and the macrophage polarization from M2- toward M1-type simultaneously in tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.4c00843 | DOI Listing |
J Med Chem
August 2024
Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P.R. China.
Epithelial-mesenchymal transition (EMT) is a critical process for cancer progression, which is crucial in inhibiting the immunity in tumors and further boosting tumor metastasis. The suppression of EMT represents a promising strategy for inhibiting metastatic tumors. Herein, a series of new canadine platinum(IV) conjugates with potent antiproliferative and antimetastatic activities were developed, which activated by suppressing EMT and provoking immune response in tumors besides causing DNA injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!