Objective: Substance misuse during pregnancy can result in a variety of poor pregnancy outcomes. Objective data reporting the prevalence of neonates born with ethanol metabolites (evidence of prenatal ethanol exposure) in their fluids or tissues are limited.

Study Design: A secondary analysis of umbilical cord tissue specimens received for routine toxicological analysis was conducted. Prevalences of ethyl glucuronide (EtG), a long-term direct ethanol biomarker, were determined using a new laboratory tool, LDTD-MSMS. Additionally, other commonly misused substances were determined using routine procedures.

Results: Of 12,995 specimens, 238 (1.8%) specimens contained EtG. Concentrations of EtG ranged from 5 ng/g to 6679 ng/g (median 47 ng/mg; IQR: 16 ng/g, 203 ng/g). Of those 238 EtG-positive specimens, nearly 58% (N = 138) contained additional substances or metabolites.

Conclusion: Self-report of substance use during pregnancy is under-reported. We have demonstrated co-exposure of substances with ethanol is higher than previous reports.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41372-024-02075-2DOI Listing

Publication Analysis

Top Keywords

umbilical cord
8
cord tissue
8
prenatal ethanol
8
ethanol exposure
8
commonly misused
8
misused substances
8
ethanol
5
tissue identify
4
identify prenatal
4
exposure co-exposure
4

Similar Publications

DNA-Dependent Protein Kinase Catalytic Subunit Prevents Ferroptosis in Retinal Pigment Epithelial Cells.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.

Purpose: The purpose of this study was to investigate the activated core kinases involved in the DNA damage responses (DDR) during ferroptosis of retinal pigment epithelial (RPE) cells in vitro and their regulatory effects on ferroptosis.

Methods: Ferroptosis was induced by erastin in induced RPE (iRPE) cells derived from human umbilical cord mesenchymal stem cells (hUCMSCs), hUCMSCs, and induced pluripotent stem cell-derived RPE (iPSC-RPE) cells. CCK8 was employed to measure the cell viability.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

Objectives: Research on neurobehavioral abnormalities in neonates of mothers with subclinical hypothyroidism (SCH) is limited. The link between umbilical cord blood brain-derived neurotrophic factor (BDNF) levels and neurobehavioral outcomes in neonates has not been explored. This study investigates the correlation between alterations in umbilical cord blood BDNF levels and early neurobehavioral abnormalities in neonates born to pregnant women with SCH.

View Article and Find Full Text PDF

Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.

View Article and Find Full Text PDF

Background: The impact of Prader-Willi syndrome (PWS) domain gene expression on the growth of healthy children is not well understood. This study investigated associations between PWS domain gene expression in umbilical cord tissue and prenatal and postnatal growth, considering potential sex differences.

Methods: Relative gene expression of paternally expressed MAGEL2, NDN, and SNURF-SNRPN, and the small nucleolar RNAs SNORD116 and SNORD115 were determined by real-time quantitative polymerase chain reaction in umbilical cord tissue from 122 healthy newborns (59 girls and 63 boys).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!