Human CYP2D6 varies across the estrous cycle in brains of transgenic mice altering drug response.

Prog Neuropsychopharmacol Biol Psychiatry

Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:

Published: December 2024

Cytochrome P450 (CYP) 2Ds are drug metabolizing enzymes found in brain and liver which metabolize numerous centrally acting drugs. Inhibition and induction of CYP2D-mediated metabolism in rodent brain alters brain drug and metabolite concentrations and resulting drug response. In female rats, brain CYP2D metabolism varies across the estrous cycle and with exogenous estrogen, changing brain drug concentrations and response. In this study harmine-induced hypothermia was lower in humanized CYP2D6 transgenic female mice during estrus compared to diestrus. Pretreatment into the cerebral ventricles with propranolol, a selective irreversible inhibitor of human CYP2D6 in brain, increased hypothermia in estrus but not in diestrus. In vivo enzyme activity was higher in brains of transgenic mice in estrus compared to diestrus and was lower after pretreatment with inhibitor in estrus, but not in diestrus. Hepatic activity and plasma harmine concentrations were unaffected by either estrous phase or inhibition of brain CYP2D6. In wild-type female mice, harmine-induced hypothermia was unaffected by either estrous phase or inhibitor pretreatment. Male mice were used as positive controls, where pretreatment with inhibitor increased harmine-induced hypothermia in transgenic but not wild-type, mice. This study provides evidence for female hormone cycle-based regulation of drug metabolism by human CYP2D6 in brain and resulting drug response. This suggests that brain CYP2D6 metabolism may vary, for example, during the menstrual cycle, pregnancy, or menopause, or while taking oral contraceptives or hormone therapy. This variation could contribute to individual differences in response to centrally acting CYP2D6-substrate drugs by altering local brain drug and/or metabolite concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11402587PMC
http://dx.doi.org/10.1016/j.pnpbp.2024.111108DOI Listing

Publication Analysis

Top Keywords

brain drug
16
human cyp2d6
12
drug response
12
harmine-induced hypothermia
12
brain
10
varies estrous
8
estrous cycle
8
brains transgenic
8
transgenic mice
8
drug
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!