The thyroid gland, a vital component of the endocrine system, plays a pivotal role in regulating metabolic processes, growth, and development. To better characterize thyroid system disrupting chemicals (TSDC), we followed the next-generation risk assessment approach, which further considers the mechanistic profile of xenobiotics. We combined targeted in vitro testing with untargeted metabolomics. Four known TSDC, propyl-thiouracil (PTU), sodium perchlorate, triclosan, and 5-pregnen-3β-ol-20-one-16α‑carbonitrile (PCN) were investigated using rat in vitro models, including primary hepatocytes, PCCL3 cells, thyroid microsomes, and three-dimensional thyroid follicles. We confirmed each compound's mode of action, PTU inhibited thyroperoxidase activity and thyroid hormones secretion in thyroid cells model, sodium perchlorate induced a NIS-mediated iodide uptake decrease as triclosan to a lesser extent, and PCN activated expression and activity of hepatic enzymes (CYPs and UGTs) involved in thyroid hormones metabolism. In parallel, we characterized intracellular metabolites of interest. We identified disrupted basal metabolic pathways, but also metabolites directly linked to the compound's mode of action as tyrosine derivates for sodium perchlorate and triclosan, bile acids involved in beta-oxidation, and precursors of cytochrome P450 synthesis for PCN. This pilot study has provided metabolomic fingerprinting of dedicated TSDC exposures, which could be used to screen and differentiate specific modes of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2024.105911DOI Listing

Publication Analysis

Top Keywords

sodium perchlorate
12
thyroid
8
perchlorate triclosan
8
compound's mode
8
mode action
8
thyroid hormones
8
investigating mechanisms
4
action
4
mechanisms action
4
action thyroid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!