The long acclimation period and sensitivity to environmental conditions of Anammox are the bottlenecks for its promotion and application. An innovative strategy was adopted to accelerate functional microbial enhancement and improve nitrogen removal performance by inoculating cryopreserved Anammox sludge and activated sludge with intermittent dosing of nanoscale zero-valent iron (nZVI). The acclimation time was shortened by 76 days with nitrogen removal efficiency (NRE) reaching up to 91.07 %. Anammox, NDFO (nitrate/nitrite-dependent Fe(II) oxidation), Feammox (Fe(III) reduction coupled with anaerobic ammonium oxidation) and abiotic reactions were coupled in the system with nZVI, contributing to 69.79 %, 15.14 %, 9.84 % and 0.25 % of nitrogen removal, respectively. Further microbial analysis demonstrated significant enrichment of functional microorganisms, such as Candidatus Jettenia, Acidovorax and Comamonas. High-efficient nitrogen removal was attribute to the increase of functional genes involved in Anammox, electronic transfer, heme C synthesis and iron metabolism. This work provides an inspiring idea for the mainstream Anammox application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131140 | DOI Listing |
Environ Res
January 2025
Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:
Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: The prevalence of chronic kidney disease (CKD) is estimated to be about 13.4% worldwide. Studies have shown that CKD accounts for up to 2% of the health cost burden.
View Article and Find Full Text PDFWater Res
December 2024
Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:
Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!