Background And Purpose: In the Netherlands, 2 protocols have been standardized for PT among the 3 proton centers: a robustness evaluation (RE) to ensure adequate CTV dose and a model-based selection (MBS) approach for IMPT patient-selection. This multi-institutional study investigates (i) inter-patient and inter-center variation of target dose from the RE protocol and (ii) the robustness of the MBS protocol against treatment errors for a cohort of head-and-neck cancer (HNC) patients treated in the 3 Dutch proton centers.

Materials And Methods: Clinical treatment plans of 100 HNC patients were evaluated. Polynomial Chaos Expansion (PCE) was used to perform a comprehensive robustness evaluation per plan, enabling the probabilistic evaluation of 100,000 complete fractionated treatments. PCE allowed to derive scenario distributions of clinically relevant dosimetric parameters to assess CTV dose (D/D, based on a prior photon plan calibration) and tumour control probabilities (TCP) as well as the evaluation of the dose to OARs and normal tissue complication probabilities (NTCP) per center.

Results: For the CTV, doses from the RE protocol were consistent with the clinical plan evaluation metrics used in the 3 centers. For the CTV, D were consistent with the clinical plan evaluation metrics at center 1 and 2 while, for center 3, a reduction of 1 GyRBE was found on average. This difference did not impact modelled TCP at center 3. Differences between expected and nominal NTCP were below 0.3 percentage point for most patients.

Conclusion: The standardization of the RE and MBS protocol lead to comparable results in terms of TCP and the NTCPs. Still, significant inter-patient and inter-center variation in dosimetric parameters remained due to clinical practice differences at each institution. The MBS approach is a robust protocol to qualify patients for PT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2024.110441DOI Listing

Publication Analysis

Top Keywords

probabilistic evaluation
8
model-based selection
8
multi-institutional study
8
robustness evaluation
8
ctv dose
8
mbs approach
8
inter-patient inter-center
8
inter-center variation
8
mbs protocol
8
hnc patients
8

Similar Publications

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Background: Lenalidomide is a thalidomide analog that has immunomodulatory and anti-angiogenic properties. The ECOC-ACRIN E1412 Phase II trial demonstrated that lenalidomide, when combined with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), extended survival in diffuse large B-cell lymphoma (DLBCL) patients. This study aimed to evaluate the cost-effectiveness of combining lenalidomide with R-CHOP (R2-CHOP) versus R-CHOP alone as the initial treatment for DLBCL from the perspective of the Chinese healthcare system.

View Article and Find Full Text PDF

Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models.

Int J Biomed Imaging

December 2024

Department of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE) 576104, Manipal, Karnataka, India.

Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios.

View Article and Find Full Text PDF

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

J Vasc Surg Venous Lymphat Disord

December 2024

Department of Surgery, University of Toronto, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Canada; Department of Surgery, King Faisal Specialist Hospital and Research Center, Saudi Arabia. Electronic address:

Objective: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LCI) following vein ablation may help guide clinical decision-making but remain limited.

View Article and Find Full Text PDF

: Environmental exposures, such as heavy metals, can significantly affect physical activity, an important determinant of health. This study explores the effect of physical activity on combined exposure to cadmium, lead, and mercury (metals), using data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES). Physical activity was measured with ActiGraph GT3X+ devices worn continuously for 7 days, while blood samples were analyzed for metal content using inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!