In recent years, significant academic and commercial interest has focused on collagen derived from horse tendons, with potential applications across diverse sectors such as medicine, pharmaceuticals, and cosmetics. Nano collagen, with its enhanced wound penetration, improved cell contact, and heightened cellular regeneration and repair capabilities due to its high surface area, holds promise for a wide range of applications. In this study, we present a novel method for producing nano collagen from the equine tendon. Our approach is characterized by its speed, affordability, simplicity and environmentally friendly nature, with precise temperature-control to prevent collagen denaturation. We conducted a comprehensive characterization of the obtained samples, including assessments of morphology, chemical and thermal properties, particle size distribution and biocompatibility. Importantly, our results indicate improvements in thermal stability, and surface roughness of nano collagen, while preserving its molecular weight. These advancements expand the potential applications of nano collagen in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134220DOI Listing

Publication Analysis

Top Keywords

nano collagen
16
collagen equine
8
equine tendon
8
potential applications
8
collagen
7
production physico-chemical
4
physico-chemical characterization
4
characterization nano-sized
4
nano-sized collagen
4
tendon years
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!