Encapsulation of β-carotene in gelatin-gum Arabic-sodium carboxymethylcellulose complex coacervates: Enhancing surimi gel properties and exploring 3D printing potential.

Int J Biol Macromol

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Prepared Food, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China. Electronic address:

Published: October 2024

This study investigates the utilization of functional additives (β-carotene microcapsules) and 3D printing technology for the production of innovative surimi products. The β-carotene microcapsules were prepared using different ratios of gelatin (Ge), gum Arabic (Ara), and carboxymethylcellulose sodium (CMC). Among these ratios, the ratio of 5:5:1 (Ge:Ara:CMC) resulted in more stable microcapsules spherical structures and better environmental stability. Subsequently, different concentrations (5-20 %) of the obtained β-carotene microcapsules were added to surimi samples. As the concentration increased, there was an improvement in the gel strength of the surimi. However, no significant changes were observed when the concentration was 15 % (p > 0.05). All samples exhibited shear thinning behavior. The addition of microcapsules improved the resilience and thixotropy of surimi, making it more suitable for 3D printing applications. The inclusion of β-carotene microcapsules in surimi products not only meets the nutritional needs of consumers, but also provides valuable insights for the development of functional surimi products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134129DOI Listing

Publication Analysis

Top Keywords

β-carotene microcapsules
16
surimi products
12
microcapsules surimi
8
surimi
7
microcapsules
6
encapsulation β-carotene
4
β-carotene gelatin-gum
4
gelatin-gum arabic-sodium
4
arabic-sodium carboxymethylcellulose
4
carboxymethylcellulose complex
4

Similar Publications

Nanosuspension Innovations: Expanding Horizons in Drug Delivery Techniques.

Pharmaceutics

January 2025

Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

Nanosuspensions (NS), with their submicron particle sizes and unique physicochemical properties, provide a versatile solution for enhancing the administration of medications that are not highly soluble in water or lipids. This review highlights recent advancements, future prospects, and challenges in NS-based drug delivery, particularly for oral, ocular, transdermal, pulmonary, and parenteral routes. The conversion of oral NS into powders, pellets, granules, tablets, and capsules, and their incorporation into film dosage forms to address stability concerns is thoroughly reviewed.

View Article and Find Full Text PDF

/: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model.

View Article and Find Full Text PDF

This study presents a comprehensive phyto- and histochemical analysis of three species: L., the Balkan endemic Guss., and the Bulgarian endemic Delip.

View Article and Find Full Text PDF

Bio-Microcapsules of Polybutylene Succinate (PBS) and Isocyanates: Towards Sustainable, Safer, and Efficient Adhesives.

Polymers (Basel)

January 2025

CERENA-Centro de Recursos Naturais e Ambiente, Department of Chemical Engineering (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.

This work describes the encapsulation of three different aliphatic isocyanates to reduce the risks associated with isocyanates' direct handling. The use of bio-based polybutylene succinate (bio-PBS) increases the sustainability factor as it allows for the use of microcapsules (MCs) from renewable sources with biodegradable features. The three different MCs (MCs-Monomer, MCs-Trimer, and MCs-Polymer) are spherical, crack-free, and matrix-type, containing an isocyanate payload between 67 wt% and 70 wt%.

View Article and Find Full Text PDF

Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application.

Molecules

January 2025

Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain.

pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!