Perfluoroalkyl substances (PFAS) are common environmental pollutants, but their toxicity framework remains elusive. This research focused on ten PFAS, evaluating their impacts on two ecotoxicologically relevant model organisms from distinct trophic levels: the crustacean Daphnia magna and the unicellular green alga Raphidocelis subcapitata. The results showed a greater sensitivity of R. subcapitata compared to D. magna. However, a 10-day follow-up to the 48 h immobilisation test in D. magna showed delayed mortality, underlining the limitations of relying on EC from standard acute toxicity tests. Among the compounds scrutinized, Perfluorodecanoic acid (PFDA) was the most toxic to R. subcapitata, succeeded by Perfluorooctane sulfonate (PFOS), Perfluorobutanoic acid (PFBA), and Perfluorononanoic acid (PFNA), with the latter being the only one to show an algicidal effect. In the same species, assessment of binary mixtures of the compounds that demonstrated high toxicity in the single evaluation revealed either additive or antagonistic interactions. Remarkably, with an EC of 31 mg L, the short-chain compound PFBA, tested individually, exhibited toxicity levels akin to the notorious long-chain PFOS, and its harm to freshwater ecosystems cannot be ruled out. Despite mounting toxicological evidence and escalating environmental concentrations, PFBA has received little scientific attention and regulatory stewardship. It is strongly advisable that regulators re-evaluate its use to mitigate potential risks to the environmental and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135269DOI Listing

Publication Analysis

Top Keywords

trophic levels
8
freshwater ecosystems
8
comparative toxicity
4
toxicity assessment
4
assessment alternative
4
alternative versus
4
versus legacy
4
legacy pfas
4
pfas implications
4
implications primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!