An isocratic HPLC-UV analytical procedure for assessment of glutathione and its related substances.

J Pharm Biomed Anal

Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States. Electronic address:

Published: October 2024

AI Article Synopsis

  • * There is a need for improved analytical methods to verify the quality of GSH products, as existing methods struggle to detect certain impurities that can affect safety and efficacy.
  • * A new HPLC-UV analytical method was developed to efficiently identify and quantify GSH and its related impurities within 10 minutes, showing high specificity and applicability for quality assessment of commercial GSH samples.

Article Abstract

Reduced glutathione (GSH) is an endogenous tripeptide antioxidant which plays a crucial role in a variety of physiological and pathological activities. Although GSH is not present in any FDA-approved drug product, GSH dietary supplement products and compounded GSH drugs are available to patients in the US. Several incidents of toxicity have occurred in recent years due to endotoxin or otherwise contaminated GSH in compounded drugs. Efficient and sensitive analytical methods are needed for assessing and ensuring the quality of GSH substance and associated drug or dietary supplement products. Impurities A (L-cysteinylglycine), B (cysteine), C (oxidized L-glutathione) and D (γ-L-glutamyl-L-cysteine) are the main related impurities for GSH drug substance which have been detected and quantified by capillary electrophoresis and qNMR analytical procedures. However, there are no reported HPLC methods for detecting or quantifying the three main related impurities A, B and D even though numerous HPLC analytical methods have been reported for analyzing GSH and impurity C. In this report, an isocratic HPLC-UV analytical procedure was developed and validated for separating and identifying GSH and related impurities A-D as well as a newly identified degradant, L-pyroglutamic acid (pGlu), within 10 minutes with resolution (R) more than 3. The LOD and LOQ were determined to be 0.02 % w/w and 0.05 % w/w, respectively, for impurities A-D and pGlu. Importantly, the optimized HPLC analytical procedure for GSH assay does not have interference from impurities A, B and D, providing highly specific results compared to the commonly used iodine titration method. The newly validated analytical procedure was applied to assess different commercial GSH bulk substance samples. The results suggest that the analytical procedure described in this work is suitable for quality assessment of GSH samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116374DOI Listing

Publication Analysis

Top Keywords

analytical procedure
20
gsh
12
isocratic hplc-uv
8
analytical
8
hplc-uv analytical
8
dietary supplement
8
supplement products
8
analytical methods
8
main impurities
8
hplc analytical
8

Similar Publications

Introduction: Chronic kidney disease-associated pruritus (CKD-aP) is a common, yet underdiagnosed condition among patients on hemodialysis. Considering the lack of established treatment pathways, we sought to evaluate the use of antidepressant, systemic antihistamines, or gabapentinoid medications among patients with CKD-aP in the year following pruritus assessment.

Methods: We included 6209 patients on hemodialysis in the analysis.

View Article and Find Full Text PDF

Guidelines to Analyze ChIP-Seq Data: Journey Through QC and Analysis Considerations.

Methods Mol Biol

January 2025

Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.

ChIP-Seq is used to study DNA-protein interactions, unraveling chromatin states and gene regulatory properties of transcription factors. ChIP-Seq involves immunoprecipitation followed by sequencing using Next-Generation sequencing approaches. The ENCODE consortium provides extensive guidelines for ChIP-Seq analysis.

View Article and Find Full Text PDF

Combining digital imaging and quantum dots for analytical purposes.

Anal Methods

January 2025

Department of Fundamental Chemistry, LIA3 - Applied Analytical Instrumentation Laboratory, Federal University of Pernambuco, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.

This review provides a critical assessment of the most recent advances in digital imaging (DI) methods, applied for the development of analytical methodologies combining quantum dots (QDs). The state-of-the-art, treatment of data, instrumental considerations, software, sensing approaches, and optimization of the resulting methods are reported. Applications of the technology for the analysis of food and beverages, biomedically relevant analytes, drugs, environmental samples and forensic samples are also discussed.

View Article and Find Full Text PDF

Unlabelled: The aim of this study was to identify parameters influencing DNA extraction and PCR amplification efficiencies in an attempt to standardize Mucorales qPCR. The Fungal PCR Initiative Mucorales Laboratory Working Group distributed two panels of simulated samples to 26 laboratories: Panel A (six sera spiked with Mucorales DNA and one negative control serum) and Panel B (six Mucorales DNA extracts). Panel A underwent DNA extraction in each laboratory according to the local procedure and were sent to a central laboratory for testing using three different qPCR techniques: one in-house qPCR assay and two commercial assays (MucorGenius and Fungiplex).

View Article and Find Full Text PDF

Objectives: An analytical protocol based on isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS), which includes a peptide-based calibration strategy, was developed and validated for the determination of cardiac troponin I (cTnI) levels in clinical samples. Additionally, the developed method was compared with a protein-based calibration strategy, using cTnI serving as a model for low-abundant proteins. The aim is to evaluate new approaches for protein quantification in complex matrices, supporting the metrology community in implementing new methods and developing fit-for-purpose SI- traceable peptide or protein primary calibrators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!