Emerging resistance to florfenicol in Actinobacillus pleuropneumoniae isolates on two Italian pig farms.

Vet Microbiol

Istituto Zooprofilattico Sperimentale Dell'umbria E Delle Marche 'Togo Rosati', Italy; Istituto Zooprofilattico Sperimentale Della Lombardia E Dell'emilia Romagna, Italy.

Published: September 2024

AI Article Synopsis

  • Actinobacillus pleuropneumoniae causes porcine pleuropneumonia, a serious lung infection in pigs, and is typically managed using antibiotics like phenicols.
  • This study identifies three florfenicol-resistant isolates of A. pleuropneumoniae from Italian pig farms, all harboring the floR gene and showing varying susceptibility levels.
  • Whole genome sequencing revealed moderate virulence traits and the presence of a novel plasmid, pAp-floR, which is closely related to another plasmid and shows stability without selective pressure, emphasizing the need to monitor resistance in this bacterium.

Article Abstract

Actinobacillus pleuropneumoniae is responsible for porcine pleuropneumonia, a highly contagious lung infection. The control of this respiratory disease remains heavily reliant on antibiotics, with phenicols being one of the primary classes of antibiotics used in pig farming. In the present study, we describe three isolates (B2278, B2176 and B2177) of A. pleuropneumoniae resistant to florfenicol attributed to the presence of the floR gene, which were obtained from two pig farms in Italy. Florfenicol susceptibility tests indicated that B2176 exhibited an intermediate susceptibility profile, while B2177 and B2278 were resistant. All three isolates belonged to serovar 6 and tested positive for the presence of the floR gene. Whole genome sequencing analysis revealed that isolates B2176, B2177 and B2278 harbored genes encoding the toxins ApxII and ApxIII, characteristic of strains with moderate virulence. Moreover, phylogenetic analysis demonstrated that these isolates were closely related, with single nucleotide polymorphisms (SNPs) ranging from 8 to 19. The floR gene was located on a novel 5588 bp plasmid, designated as pAp-floR. BLASTN analysis showed that the pAp-floR plasmid had high nucleotide identity (99 %) and coverage (60 %) with the pMVSCS1 plasmid (5621 bp) from Mannheimia varigena MVSCS1 of porcine origin. Additionally, at least under laboratory conditions, pAp-floR was stably maintained even in the absence of direct selective pressure, suggesting that it does not impose a fitness cost. Our study underscores the necessity of monitoring the spread of florfenicol-resistant A. pleuropneumoniae isolates in the coming years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2024.110186DOI Listing

Publication Analysis

Top Keywords

flor gene
12
actinobacillus pleuropneumoniae
8
pleuropneumoniae isolates
8
pig farms
8
three isolates
8
b2176 b2177
8
presence flor
8
b2177 b2278
8
isolates
6
emerging resistance
4

Similar Publications

Follicular lymphoma (FL) outcomes are heavily influenced by host immune activity with immune anti-tumor activity mitigated by PD-1/PD-L1 pathway engagement. Combination CD20-directed therapy plus PD-1 inhibition (PD-1i) increases T-cell tumor killing and NK-cell antibody-dependent cell cytotoxicity (ADCC). Mounting evidence supports immune-priming using PD-1i before cancer-directed agents.

View Article and Find Full Text PDF

Detection of antimicrobial resistance in in South China using whole-genome sequencing.

Front Microbiol

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.

Introduction: causes Glässer's disease in pigs, a leading cause of death in swine herds and a major contributor to economic losses in the global swine industry. Although several studies have investigated antimicrobial resistance in , the correlation between phenotypic and genotypic resistance remains unclear due to incomplete genetic resistance mechanisms detection.

Methods: The susceptibility of 117 clinical isolates to 7 antimicrobials was determined using a broth microdilution method.

View Article and Find Full Text PDF

Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis.

Sci Rep

January 2025

Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.

Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response.

View Article and Find Full Text PDF

Background: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.

View Article and Find Full Text PDF

This investigation aimed to examine the virulence genes and antimicrobial resistance profiles of Shiga toxin-producing (STEC) strains found in diarrheal calves in Xinjiang between 2016 and 2022. A total of 800 samples, including 232 fecal and 568 rectal swabs from calves under 2 months old with diarrhea, were analyzed for Shiga toxin (Stx)-encoding genes using polymerase chain reaction. The study characterized the isolates based on their subtypes, virulence genes, O serogroups, phylogenetic groups, hemolytic phenotypes, antibiotic resistance, and resistance genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!