Calcium deposition in chicken eggshells: role of host genetics and gut microbiota.

Poult Sci

State Key Laboratory of Animal Biotech Breeding and Frontier Science Center of Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China. Electronic address:

Published: October 2024

Eggshell is predominantly composed of calcium carbonate, making up about 95% of its composition. Eggshell quality is closely related to the amount of calcium deposition in the shell, which requires chickens to maintain a robust state of calcium metabolism. In this study, we introduced a novel parameter, Total Eggshell Weight (TESW), which measures the total weight of eggshells produced by chickens over a period of 10 consecutive d, providing valuable information on the intensity of calcium metabolism in chickens. Genome-wide association study (GWAS) was conducted to explore the genetic determinants of eggshell calcification in a population of 570 Rhode Island Red laying hens at 90 wk of age. This study revealed a significant association between a specific SNP (rs14249431) and TESW. Additionally, using random forest modeling and 2-tailed testing, we identified 3 genera, Lactobacillus in the jejunum, Lactobacillus, and Fournierella in the cecum, that exhibited a significant association with TESW. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of claudin-1 and occludin genes in individuals with low TESW and high abundance of jejunal Lactobacillus confirmed that the inhibitory effect of jejunal Lactobacillus on calcium uptake was achieved through the up-regulation of tight junctions in intestinal epithelial cells. Notably, both host and microbial factors influence TESW, displaying a mutually influential relationship between them. The microbiome-wide Genome-Wide Association Study (mb-GWAS) identified significant associations between these 3 genera and specific genomic variants, such as rs316115020 and rs316420452 on chromosome 5, rs313198529 on chromosome 11, linked to Lactobacillus in the cecum. Moreover, rs312552529 on chromosome 1 exhibited potential association with Fournierella in the cecum. This study highlights the influence of host genetics and gut microbiota on calcium deposition in eggshells during the late laying phase, providing a foundational reference for studying calcium metabolism in hens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339253PMC
http://dx.doi.org/10.1016/j.psj.2024.104073DOI Listing

Publication Analysis

Top Keywords

calcium deposition
12
calcium metabolism
12
calcium
8
host genetics
8
genetics gut
8
gut microbiota
8
genome-wide association
8
association study
8
fournierella cecum
8
jejunal lactobacillus
8

Similar Publications

Exploring the Effects of Zingerone on Differentiation and Signalling Pathways in Bone Cell Lines.

Metabolites

December 2024

Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.

Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.

View Article and Find Full Text PDF

In recent years, the demand for orthopedic implants has surged due to increased life expectancy, necessitating the need for materials that better mimic the biomechanical properties of human bone. Traditional metal implants, despite their mechanical superiority and biocompatibility, often face challenges such as mismatched elastic modulus and ion release, leading to complications and implant failures. Polyetheretherketone (PEEK), a semi-crystalline polymer with an aromatic backbone, presents a promising alternative due to its adjustable elastic modulus and compatibility with bone tissue.

View Article and Find Full Text PDF

High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.

View Article and Find Full Text PDF

Deciphering the mineral code of urinary stones: A first look at zinc isotopes.

Environ Pollut

December 2024

Nu instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham LL13 9XS, United Kingdom.

Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!