AI Article Synopsis

  • Ischemia-reperfusion injury (IRI) significantly impacts liver transplant outcomes and is inevitable during the procedure.
  • Ferroptosis is a unique type of cell death driven by iron and lipid peroxidation, differing from other known forms like autophagy and apoptosis.
  • This review examines the mechanisms of ferroptosis, its role in hepatic IRI, and potential therapeutic strategies to reduce IRI by targeting ferroptosis.

Article Abstract

Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2024.2386075DOI Listing

Publication Analysis

Top Keywords

hepatic iri
12
cell death
8
ferroptosis
7
ferroptosis target
4
hepatic
4
target hepatic
4
hepatic ischemia-reperfusion
4
ischemia-reperfusion injury?
4
injury? ischemia-reperfusion
4
ischemia-reperfusion injury
4

Similar Publications

This study aimed to investigate the protective effects of vitamin B complex and alpha-lipoic acid (ALA) pre-treatments on hepatic ischemia-reperfusion injury (IRI) in rats, focusing on their potential to enhance antioxidant defense mechanisms and reduce post-ischemic liver damage. Thirty male Wistar albino rats were divided into four groups: sham group (n = 10), IRI group (n = 10), vitamin B group (n = 10), vitamin B + ALA group (n = 10). In the IRI, vitamin B, and vitamin B + ALA groups, the rats underwent 45 min of hepatic ischemia followed by 60 min of reperfusion.

View Article and Find Full Text PDF

Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway.

Redox Biol

December 2024

Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China. Electronic address:

Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive.

View Article and Find Full Text PDF

The liver plays a crucial role in regulating lipid metabolism. Our study examined the impact of Exosomes derived from adipose mesenchymal stem cells (ADSCs-Exo) on lipid metabolism following liver ischemia-reperfusion injury (IRI) combined with partial hepatectomy. We developed a miniature swine model for a minimally invasive hemi-hepatectomy combined with liver IRI.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is the leading cause of hepatic graft dysfunction, resulting from hepatocyte damage. Nevertheless, given the few specialized therapeutics available in hepatic IRI, additional mechanistic insights into hepatocyte damage are required. Here, the protein solute carrier family 39 member 14 (SLC39A14) is identified as a pro-ferroptosis target in hepatocytes of human liver allografts through single-cell RNA sequencing analysis.

View Article and Find Full Text PDF

Hepatic Ischemia-Reperfusion Injury (HIRI) is an unavoidable pathological process during liver surgeries such as liver transplantation and hepatic resection, which involves a complex set of molecular and cellular mechanisms. The mechanisms of HIRI may involve a variety of biological processes in which inflammation and apoptosis play a central role. Therefore, it is crucial to deeply investigate the effects of different hypoxia and reoxygenation times on the construction of an in vitro model of hepatic ischemia-reperfusion injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!