Unveiling heterogeneity and prognostic markers in ductal breast cancer through single-cell RNA-seq.

Cancer Cell Int

The Second Department of Breast Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, P. R. China.

Published: July 2024

AI Article Synopsis

  • Breast cancer (BC), particularly the ductal subtype, shows significant cellular diversity which affects treatment outcomes; this study uses single-cell RNA sequencing data to explore this heterogeneity and identify potential markers for prognosis and therapy.
  • Bioinformatics methods were applied to analyze single-cell sequencing data, highlighting differences in gene expression and behavior between Type 1 and Type 2 ductal epithelial cells, along with identifying key genes (CYP24A1 and TFPI2) linked to patient prognosis.
  • The findings underscore the importance of cellular heterogeneity in ductal BC, revealing CYP24A1 and TFPI2 as significant prognostic markers and therapeutic targets, with validation showing their role in inhibiting malignant behaviors in BC cells.

Article Abstract

Background: Breast cancer (BC) is a heterogeneous disease, with the ductal subtype exhibiting significant cellular diversity that influences prognosis and response to treatment. Single-cell RNA sequencing data from the GEO database were utilized in this study to investigate the underlying mechanisms of cellular heterogeneity and to identify potential prognostic markers and therapeutic targets.

Methods: Bioinformatics analysis was conducted using R packages to analyze the single-cell sequencing data. The presence of highly variable genes and differences in malignant potency within the same BC samples were examined. Differential gene expression and biological function between Type 1 and Type 2 ductal epithelial cells were identified. Lasso regression and Cox proportional hazards regression analyses were employed to identify genes associated with patient prognosis. Experimental validation was performed in vitro and in vivo to confirm the functional relevance of the identified genes.

Results: The analysis revealed notable heterogeneity among BC cells, with the presence of highly variable genes and differences in malignant behavior within the same samples. Significant disparities in gene expression and biological function were identified between Type 1 and Type 2 ductal epithelial cells. Through regression analyses, CYP24A1 and TFPI2 were identified as pivotal genes associated with patient prognosis. Kaplan-Meier curves demonstrated their prognostic significance, and experimental validation confirmed their inhibitory effects on malignant behaviors of ductal BC cells.

Conclusion: This study highlights the cellular heterogeneity in ductal subtype breast cancer and delineates the differential gene expressions and biological functions between Type 1 and Type 2 ductal epithelial cells. The genes CYP24A1 and TFPI2 emerged as promising prognostic markers and therapeutic targets, exhibiting inhibitory effects on BC cell malignancy in vitro and in vivo. These findings offer the potential for improved BC management and the development of targeted treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282761PMC
http://dx.doi.org/10.1186/s12935-024-03325-1DOI Listing

Publication Analysis

Top Keywords

prognostic markers
12
breast cancer
12
type type
12
type ductal
12
ductal epithelial
12
epithelial cells
12
ductal subtype
8
sequencing data
8
cellular heterogeneity
8
markers therapeutic
8

Similar Publications

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

Introduction: Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms.

Materials And Methods: A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma.

View Article and Find Full Text PDF

Cardiac amyloidosis represents a unique disease process characterized by amyloid fibril deposition within the myocardial extracellular space. Advances in multimodality cardiac imaging enable accurate diagnosis and facilitate prompt initiation of disease-modifying therapies. Furthermore, rapid advances in multimodality imaging have enriched understanding of the underlying pathogenesis, enhanced prognostication, and resulted in the development of imaging-based markers that reflect the amyloid burden, which is of increasing importance when assessing the response to treatment.

View Article and Find Full Text PDF

Molecular Stratification of Light-Chain Cardiac Amyloidosis With F-Florbetapir and Ga-FAPI-04 for Enhanced Prognostic Precision.

JACC Cardiovasc Imaging

January 2025

Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Center for Rare Diseases Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Background: Cardiac involvement in amyloid light chain (AL) amyloidosis significantly influences prognosis, necessitating timely diagnosis and meticulous risk stratification.

Objectives: This prospective study aimed to delineate the molecular phenotypes of AL cardiac amyloidosis (AL-CA) by characterizing fibro-amyloid deposition using F-florbetapir and gallium-68-labeled fibroblast activation protein inhibitor-04 (Ga-FAPI-04) positron emission tomography (PET)/computed tomography (CT) imaging. The authors also proposed a novel molecular stratification methodology for prognosis.

View Article and Find Full Text PDF

Background: The human microbiome is crucial in regulating intestinal and systemic functions. While its role in cardiovascular disease is better understood, the link between intestinal microbiota and valvular heart diseases (VHD) remains largely unexplored.

Methods: Peer-reviewed studies on human, animal or cell models analysing gut microbiota profiles published up to April 2024 were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!