Purpose: Cancer continues to be a major global health challenge, affecting millions of individuals and placing substantial burdens on healthcare systems worldwide. Recent research suggests a complex relationship between obesity and cancer, with obesity increasing the risk of various cancers while potentially improving outcomes for diagnosed patients, a phenomenon termed the "obesity paradox". In this study, we used a cohort of 1781 patients to investigate the impact of obesity on tumor characteristics, including gene expression, pathway dysfunction, genetic alterations and immune infiltration.
Methods: Patient samples spanned 10 different cancer types, and were obtained from the Cancer Genome Atlas, with annotations for body mass index (BMI), age, sex, tumor size and tumor gene expression data.
Results: When we compared the proportion of large (T3-T4) to small tumors (T1-T2) between obese and non-obese patients, we found that obese patients tended to present with smaller, less invasive tumors and exhibited distinct gene expression profiles, particularly in metabolic and proliferative pathways. Moreover, smaller tumors in obese patients show higher immune cell infiltration and increased T cell diversity, suggesting enhanced immune activity.
Conclusion: Taken together, these findings highlight the influence of obesity on tumor biology, with implications for personalized treatment strategies that consider patient physiology alongside tumor characteristics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11283407 | PMC |
http://dx.doi.org/10.1007/s00432-024-05890-4 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Institute of Science and Technology Austria, AT-3400 Klosterneuburg, Austria.
Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.
Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.
Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!