Hydrogels are widely employed in biomedical applications due to their high swelling potential, tailored mechanical properties, biocompatibility, and ability to incorporate drugs to modify their release behavior. This study explored the synthesis of dual stimuli-responsive composite hydrogels by combining poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) with 4, 8, and 12 % (w/w) of cellulose nanocrystals (CNC) through in-situ free-radical polymerization, modifying their properties for topical anti-inflammatory release. Although PDMAEMA-based hydrogels have been known for their responsiveness to pH and temperature stimuli, which are useful for modulating the release profile of drugs, their use as a matrix for anti-inflammatory topical applications remains unexplored. Thus, a comprehensive analysis of CNC concentration's impact on PDMAEMA-based hydrogel structure and physicochemical properties is provided. The incorporation of ibuprofen as an anti-inflammatory model was assessed, providing insights into the potential of these composite hydrogels for sustained drug delivery applications. Overall, the hydrogels exhibited homogenous CNC dispersion, with gel fraction higher than 70 % and ibuprofen load higher than 90 %. The rise in CNC concentration led to an increase hydrogel stiffness. Finally, the CNC incorporation also modified the ibuprofen release to a more sustained profile, following the Peppas-Sahlin model, which may be attractive for developing pharmaceutical devices for different therapeutical scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.134168 | DOI Listing |
Biofabrication
January 2025
Division of Engineering, New York University Abu Dhabi, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, Abu Dhabi, 129188, UNITED ARAB EMIRATES.
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2025
Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.
Heavy metal ions are acknowledged to impact the environment and human health adversely. CNCs are effective materials for removing heavy metal ions in industrial applications and process innovations since they can be used in static and dynamic adsorption processes. Cost-effective, uncomplicated water treatment technologies must be developed using biodegradable polymers, namely, modified cellulose nanocrystals.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
North Caucasus Federal University, 355000 Stavropol, Russia. Electronic address:
Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!