Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides (AMPs), characterized by their cationic nature and amphiphilic properties, play a pivotal role in inhibiting the biological activity of microbes. Currently, only a fraction of the antimicrobial potential within the ribosomal protein family has been explored, despite its extensive membership and resemblance to AMPs. Herein we demonstrated that amphioxus RPL17 (BjRPL17) exhibited not only upregulated expression upon bacterial stimulation but also possessed bactericidal capabilities against both Gram-negative and -positive bacteria through combined action mechanisms including interaction with cell surface molecules LPS, LTA, and PGN, disruption of cell membrane integrity, promotion of membrane depolarization, and induction of intracellular ROS production. Furthermore, a peptide derived from residues 127-141 of BjRPL17 (termed BjRPL17-1) showed antibacterial activity against Staphylococcus aureus and its methicillin-resistant strain via the same mechanism observed for the full-length protein. Additionally, the rpl17 gene was highly conserved in Metazoa, hinting it may play a universal role in the antibacterial defense system in different animals. Importantly, neither BjRPL17 nor peptide BjRPL17-1 exhibited toxicity towards mammalian cells thereby offering prospects for designing novel AMP agents based on these findings. Collectively, our results establish RPL17 as a novel member of AMPs with remarkable evolutionary conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2024.109791 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!