Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, and the therapeutic is focused on several approaches including the inhibition of fibril formation by small compounds, avoiding the formation of cytotoxic oligomers. Thus, we decided to explore the capacity of compounds carrying catechol moieties to inhibit the progression of α-synuclein. Overall, the compounds rosmarinic acid (1), carnosic acid (2), carnosol (3), epiisorosmanol (4), and rosmanol (5) avoid the progression of fibril formation assessed by Thiofavine T (ThT), and atomic force microscopy images showed that morphology is influenced for the actions of compounds over fibrillization. Moreover, ITC experiments showed a K varying from 28 to 51 µM, the ΔG showed that the reaction between compounds and α-syn is spontaneous, and ΔH is associated with an exothermic reaction, suggesting the interactions of hydrogen bonds among compounds and α-syn. Docking experiments reinforce this idea showing the intermolecular interactions are mostly hydrogen bonding within the sites 2, 9, and 3/13 of α-synuclein, and compounds 1 and 5. Thus, compound 1, rosmarinic acid, interestingly interacts better with site 9 through catechol and Lysines. In cultured Raw 264. 7 cells, the presence of compounds showed that most of them can promote cell differentiation, especially rosmarinic acid, and rosmanol, both preserving tubulin cytoskeleton. However, once we evaluated whether or not the aggregates pre-treated with compounds could prevent the disruption of microtubules of Raw 264.7 cells, only pre-treated aggregates with rosmarinic acid prevented the disruption of the cytoskeleton. Altogether, we showed that especially rosmarinic acid not only inhibits α-syn but stabilizes the remaining aggregates turning them into not-toxic to Raw 264.7 cells suggesting a main role in cell survival and antigen processing in response to external α-syn aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2024.107669DOI Listing

Publication Analysis

Top Keywords

rosmarinic acid
24
raw 2647
12
2647 cells
12
compounds
9
microtubules raw
8
fibril formation
8
α-synuclein compounds
8
compounds α-syn
8
interactions hydrogen
8
rosmarinic
6

Similar Publications

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Gastrointestinal nematodes (GINs) inflict significant economic losses on sheep and goat farming globally due to reduced productivity and the development of anthelmintic resistance. Sustainable control strategies are urgently needed including the exploration of medicinal plants as safer alternatives to chemical anthelmintics. This genus of plants is used for anti-inflammatory, antioxidant, and antimicrobial activities.

View Article and Find Full Text PDF

Antiviral Activity and Underlying Mechanism of Aqueous Extract for Treating SARS-CoV-2.

Molecules

January 2025

Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.

Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects and the underlying mechanism of aqueous extract of (AEMH) for treating SARS-CoV-2.

View Article and Find Full Text PDF

This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Labill. and L. for neuroprotective purposes.

View Article and Find Full Text PDF

Nanoparticles for Biomedical Use Derived from Natural Biomolecules: Tannic Acid and Arginine.

Biomedicines

January 2025

Department of Chemistry, Faculty of Sciences, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey.

: Tannic acid (TA) is a well-known natural phenolic acid composed of ten gallic acids linked to each other with ester bonding possessing excellent antioxidant properties in addition to antimicrobial and anticancer characteristics. Arginine (ARG) is a positively charged amino acid at physiological pH because of nitrogen-rich side chain. : Here, poly(tannic acid-co-arginine) (p(TA-co-ARG)) particles at three mole ratios, TA:ARG = 1:1, 1:2, and 1:3, were prepared via a Mannich condensation reaction between TA and ARG by utilizing formaldehyde as a linking agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!