Combining hybrid cell membrane modified magnetic nanoparticles and inverted microfluidic chip for in situ CTCs capture and inactivation.

Biosens Bioelectron

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China. Electronic address:

Published: November 2024

Circulating tumor cells (CTCs) serve as crucial indicators for tumor occurrence, progression, and prognosis monitoring. However, achieving high sensitivity and high purity capture of CTCs remains challenging. Additionally, in situ capture and synchronous clearance hold promise as methods to impede tumor metastasis, but further exploration is needed. In this study, biomimetic cell membrane-coated magnetic nanoparticles (NPs) were designed to address the issue of nonspecific adsorption of capture probes by the immune system during blood circulation. Membranes from human breast cancer cells (tumor cell membranes, TMs) and leukocytes (white blood cell membranes, WMs) were extracted and fused to form a hybrid membrane (HM), which was further modified onto the surface of porous magnetic NPs loaded with indocyanine green (ICG). The incorporation of TM enhanced the material's target specificity, thus increasing capture efficiency, while WM coating reduced interference from homologous white blood cells (WBCs), further enhancing capture purity. Additionally, in conjunction with our novel inverted microfluidic chip, this work introduces the first use of polymer photonic crystals as the capture interface for CTCs. Besides providing an advantageous surface structure for CTC attachment, the 808 nm photonic bandgap effectively amplifies the 808 nm excitation light at the capture surface position. Therefore, upon capturing CTCs, the ICG molecules in the probes facilitate enhanced photothermal (PTT) and photodynamic (PDT) synergistic effects, directly inactivating the captured CTCs. This method achieves capture efficiency and purity exceeding 95% and permits in situ inactivation post-capture, providing an important approach for future research on impeding tumor metastasis in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116575DOI Listing

Publication Analysis

Top Keywords

capture
9
membrane modified
8
magnetic nanoparticles
8
inverted microfluidic
8
microfluidic chip
8
tumor metastasis
8
cell membranes
8
white blood
8
capture efficiency
8
ctcs
6

Similar Publications

Natural Densitals.

J Phys Chem Lett

January 2025

Faculty of Chemistry, Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

The concept of natural densitals (NDs) and their amplitudes is introduced. These quantities provide the spectral decomposition of the cumulant of the two-electron density that, by definition, quantifies the extent of electron correlation. Consequently, they are ideally suited for a rigorous description of electron correlation effects in Coulombic systems.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Posttranslational modifications (PTMs) of proteins play critical roles in regulating many cellular events. Antibodies targeting site-specific PTMs are essential tools for detecting and enriching PTMs at sites of interest. However, fundamental difficulties in molecular recognition of both PTM and surrounding peptide sequence have hindered the efficient generation of highly sequence-specific anti-PTM antibodies.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!