Metal-organic frameworks (MOFs) offer diverse applications in the food industry, facilitating loading, protection, and controlled release of functional ingredients despite encountering loading capacity and functional activity limitations. This study focuses on curcumin‑zinc MOFs, harnessing curcumin's renowned health benefits and zinc to enhance pharmacological properties. We evaluated their synthesis efficiency, stability under varying conditions (pH, salt concentration, temperature), loading and antioxidant capacity. The results showed that microwave synthesis yielded MOFs with a 23.2 ± 4.5% yield, stable within pH 4-10, gradually decomposing in PBS. DPPH, ABTS, and H₂O₂ assays revealed varying free radical scavenging abilities. MOFs disintegrate in either acidic environments or contain HO (at a concentration threshold of 10 μM). Post-disintegration, these MOFs significantly inhibiting the secretion of TNF-α by RAW264.7 cells induced by LPS. These findings highlight the potential of novel curcumin‑zinc MOF materials for nutrient delivery, addressing challenges in effectively delivering functional ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140449 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of California Riverside, Chemistry Department, Chemistry Department, 92521, Riverside, UNITED STATES OF AMERICA.
Although metal-organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFSmall
January 2025
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal, University Xuzhou, Jiangsu, 221116, P. R. China.
Fabricating visible-light-responsive metal-organic frameworks (MOFs) with high stability and effective catalytic functionality remains a long-term pursuit yet a great challenge. Herein, a strategy of increasing ligand and cluster connectivity is developed to construct highly stable fluorescein MOFs, La-CFL, presenting a new (4,8)-connected topological structure compared to Cd-FL constructed using 6-connected dinuclear clusters and 3-connected tritopic ligands. La(CFL) containers like Chinese "Ritual Wine Vessels (Jue)" resemble linear arrangements interconnected by the [La(COO)] clusters.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northwestern University, Department of Chemistry, UNITED STATES OF AMERICA.
Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!