Objective: This study aims to assess the efficacy and limitations of Computed Tomography Angiography (CTA)-based 3D virtual models for preoperative simulation and intraoperative neuronavigation in the surgical treatment of Distal Anterior Cerebral Artery (DACA) Aneurysms.

Methods: A retrospective observational study was conducted, analyzing patients who underwent surgical clipping of DACA aneurysms via an interhemispheric approach from 2016 to 2022. Outcomes measured included qualitative analyses of 3D reconstructions against actual intraoperative anatomy, neuronavigator accuracy, 6-month modified Rankin Scale (mRS), complete exclusion rates, and surgical complications. Patient demographics, clinical characteristics, surgical timing, and intraoperative data were meticulously documented for analysis.

Results: Fifteen patients were included in the study, with a mean age of 52 years. The mean Hunt-Hess score at admission was 2.2, encompassing 2 unruptured and 13 ruptured aneurysms. Intraoperative anatomical visualization perfectly matched the preoperative 3D model in 13 cases, with discrepancies in two. Neuronavigation demonstrated a mean accuracy of 1.76 mm, remaining consistent in 14 patients, and accurately tracking the planned trajectory. Postoperative complications occurred in 26.5 % of patients, including two fatalities, with no navigation-related complications. Incomplete aneurysm occlusion was observed in one case. The mean mRS score at 6 months was 2.46.

Conclusions: The employment of 3D CTA for preoperative simulation and intraoperative neuronavigation holds significant potential in enhancing the surgical management of DACA aneurysms. Despite some discrepancies and technical limitations, the overall precision of preoperative simulations and the strategic value of intraoperative neuronavigation highlight their utility in improving surgical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jocn.2024.110756DOI Listing

Publication Analysis

Top Keywords

intraoperative neuronavigation
16
preoperative simulation
12
simulation intraoperative
12
cta-based virtual
8
neuronavigation surgical
8
surgical treatment
8
treatment distal
8
distal anterior
8
anterior cerebral
8
cerebral artery
8

Similar Publications

This paper deals with neuro-registration using tele-manipulation (Master-Slave Manipulation) to facilitate tele-surgery and enhance the overall accuracy and reach of the robot-assisted neurosurgery. Accurate Neuro-registration is important as the success of the surgical procedure highly depends on it. A 6-degree-of-freedom Parallel Kinematic Mechanism (6D-PKM) master-slave robot in tele-manipulation mode is utilized for both neuro-registration and neurosurgery.

View Article and Find Full Text PDF

: Cerebral cavernous malformations (CCMs), particularly when located in the cerebellum, pose unique clinical challenges due to the risk of hemorrhage and proximity to critical neurovascular structures. Surgical resection is often necessary to prevent further neurological deterioration. This case report describes the management of a symptomatic cerebellar cavernoma, emphasizing the use of microsurgical techniques and long-term follow-up.

View Article and Find Full Text PDF

Background: The transoral transpharyngeal odontoidectomy, followed by occipitocervical fixation, have traditionally been a recognized method for ameliorating ventral compression at the craniovertebral junction (CVJ), despite its associated comorbidities. As an alternative, the endoscopic endonasal odontoid resection is a viable approach for various CVJ abnromalities that preserve the oropharynx and leads to fewer procedure-related complications(1-4). We present our case to detail the technical nuances of the procedure and its advantages over other techniques.

View Article and Find Full Text PDF

Background: Brain tumor needle biopsy interventions are inflicted with nondiagnostic or biased sampling in up to 25% and hemorrhage, including asymptomatic cases, in up to 60%. To identify diagnostic tissue and sites with increased microcirculation, intraoperative optical techniques have been suggested. The aim of this study was to investigate the clinical implications of in situ optical guidance in frameless navigated tumor biopsies.

View Article and Find Full Text PDF

Background: Physical forces exerted by expanding brain tumors - specifically the compressive stresses propagated through solid tissue structures - reduces brain perfusion and neurological function, but heretofore has not been directly measured in patients . Solid stress levels estimated from tumor growth patterns are negatively correlated with neurological performance in patients. We hypothesize that measurements of solid stress can be used to inform clinical management of brain tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!