Partial protein binding of uracil and thymine affects accurate dihydropyrimidine dehydrogenase (DPD) phenotyping.

J Pharm Biomed Anal

Laboratory of Chemical Biology, department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands; Clinical Laboratory, Catharina Hospital Eindhoven, the Netherlands; Expert Center Clinical Chemistry Eindhoven, the Netherlands. Electronic address:

Published: October 2024

Fluorouracil is among the most used antimetabolite drugs for the chemotherapeutic treatment of various types of gastrointestinal malignancies. Dihydropyrimidine dehydrogenase (DPYD) genotyping prior to fluorouracil treatment is considered standard practice in most European countries. Yet, current pre-therapeutic DPYD genotyping procedures do not identify all dihydropyrimidine dehydrogenase (DPD)-deficient patients. Alternatively, DPD activity can be estimated by determining the DPD phenotype by quantification of plasma concentrations of the endogenous uracil and thymine concentrations and their respective metabolites dihydrouracil (DHU) and dihydrothymine (DHT). Liquid chromatography - mass spectrometry (LC-MS) detection is currently considered as the most adequate method for quantification of low-molecular weight molecules, although the sample preparation method is highly critical for analytical outcome. It was hypothesized that during protein precipitation, the recovery of the molecule of interest highly depends on the choice of precipitation agent and the extent of protein binding in plasma. In this work, the effect of protein precipitation using acetonitrile (ACN) compared to strong acid perchloric acid (PCA) on the recovery of uracil, thymine, DHU and DHT is demonstrated. Upon the analysis of plasma samples, PCA precipitation showed higher concentrations of uracil and thymine as compared to ACN precipitation. Using ultrafiltration, it was shown that uracil and thymine are significantly (60-65 %) bound to proteins compared to DHU and DHT. This shows that before harmonized cut-off levels of DPD phenotyping can be applied in clinical practice, the analytical methodology requires extensive further optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116381DOI Listing

Publication Analysis

Top Keywords

uracil thymine
20
dihydropyrimidine dehydrogenase
12
protein binding
8
dpd phenotyping
8
dpyd genotyping
8
protein precipitation
8
dhu dht
8
uracil
5
thymine
5
precipitation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!