A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shifting to biology promotes highly efficient iron removal in groundwater filters. | LitMetric

Rapid sand filters are established and widely applied technologies for groundwater treatment. In these filters, main groundwater contaminants such as iron, manganese, and ammonium are oxidized and removed. Conventionally, intensive aeration is employed to provide oxygen for these redox reactions. While effective, intensive aeration promotes flocculent iron removal, which results in iron oxide flocs that rapidly clog the filter. In this study, we operated two parallel full-scale sand filters at different aeration intensities to resolve the relative contribution of homogeneous, heterogeneous and biological iron removal pathways, and identify their operational controls. Our results show that mild aeration in the LOW filter (5 mg/L O pH 6.9) promoted biological iron removal and enabled iron oxidation at twice the rate compared to the intensively aerated HIGH filter (>10 mg/L O pH 7.4). Microscopy images showed distinctive twisted stalk-like iron solids, the biosignatures of Gallionella ferruginea, both in the LOW filter sand coatings as well as in its backwash solids. In accordance, 10 times higher DNA copy numbers of G. ferruginea were found in the LOW filter effluent. Clogging by biogenic iron solids was slower than by chemical iron flocs, resulting in lower backwash frequencies and yielding four times more water per run. Ultimately, our results reveal that biological iron oxidation can be actively controlled and favoured over competing physico-chemical routes. The production of more compact and practically valuable iron oxide solids is of outmost interest. We conclude that, although counterintuitive, slowing down iron oxidation in the water before filtration enables rapid iron removal in the biofilter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.122135DOI Listing

Publication Analysis

Top Keywords

iron removal
20
iron
14
biological iron
12
low filter
12
iron oxidation
12
sand filters
8
intensive aeration
8
iron oxide
8
iron solids
8
ferruginea low
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!